
Loren H. Dill
University of Akron, Akron, Ohio

Representation of Ice Geometry by Parametric
Functions: Construction of Approximating
NURBS Curves and Quantification of
Ice Roughness—Year 1: Approximating
NURBS Curves

NASA/CR—2004-213071

April 2004

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at 301–621–0134

• Telephone the NASA Access Help Desk at
301–621–0390

• Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076

Loren H. Dill
University of Akron, Akron, Ohio

Representation of Ice Geometry by Parametric
Functions: Construction of Approximating
NURBS Curves and Quantification of
Ice Roughness—Year 1: Approximating
NURBS Curves

NASA/CR—2004-213071

April 2004

National Aeronautics and
Space Administration

Glenn Research Center

Prepared under Grant NAG3–2848

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

This report contains preliminary
findings, subject to revision as

analysis proceeds.

Available electronically at http://gltrs.grc.nasa.gov

NASA/CR—2004-213071 1

Representation of Ice Geometry by Parametric Functions:
Construction of Approximating NURBS Curves and Quantification of

Ice Roughness—Year 1: Approximating NURBS Curves

Loren H. Dill
The University of Akron

Akron, Ohio 44325

Abstract

Software was developed to construct NURBS curves that approximate the geometries of iced airfoils.
Users specify a tolerance that determines the extent to which the approximating curve follows the rough
ice. This ability to smooth the ice geometry in a controlled manner will assist the generation of grids
suitable for numerical aerodynamic simulations, and ultimately aid studies of the effects of smoothing
upon the aerodynamics of iced airfoils. The software was applied to several different types of iced airfoil
data collected in the Icing Research Tunnel at NASA Glenn Research Center, and was found to efficiently
generate suitable approximating NURBS curves for all geometries. This method is an improvement over
the current “control point formulation” of SmaggIce (v.1.2). In this report, we present the relevant theory
of approximating NURBS curves and discuss typical results of the software.

Introduction
The detrimental effect of ice upon airfoil performance has long been a safety concern, and is largely
studied using experimental models in special wind tunnels such as the National Aeronautics and Space
Administration’s Icing Research Tunnel at the Glenn Research Center. In recent years, the reduced
aerodynamic performance of airfoils with moderate ice has been successfully simulated via computational
fluid dynamics (CFD) [1-4]. There is hope that CFD can be used to simulate aerodynamic performance
under more general icing conditions. Experimental and computational efforts would then serve more
complementary roles in the development of safe aircraft, and safety margins could be enhanced at reduced
costs.

In general, the presence of ice on an airfoil greatly increases the difficulty of a CFD analysis over that of a
clean airfoil. The ice often has deep narrow crevices and exhibits varying degrees of roughness. The
associated flow over iced airfoils is very complex. In particular, existing grid generation codes are
generally ill equipped to accommodate the wide variety of shapes and sizes of ice that is typically found
on an airfoil. So instead of being automated as it is for a clean airfoil, the generation of quality grids for
iced airfoils is frequently a labor intensive, interactive process. To address this problem, NASA has been
developing an interactive software toolkit [5] called SmaggIce 2D. This software enables the user in the
tasks of geometry preparation, domain decomposition, block boundary discretization, gridding, and
linking to the flow solver for a two-dimensional airfoil.

The current version (v1.2) of SmaggIce 2D provides an option to represent the ice geometry via a Non-
Uniform Rational B-Spline (NURBS) curve [6-8]. NURBS have a number of attractive features,
including fast and numerically stable algorithms, and easy-to-understand geometric interpretations.
Designers of the current software found it convenient to place the control points of the NURBS curve on

NASA/CR—2004-213071 2

the x-y data that specifies the ice geometry. Ordinarily, control points are not placed on the geometry to
be represented, but in this case the error is small due to the large number and high density of the given
data. Nodes are later placed along the representation for numerical simulation.

Smoothing of the ice geometry representation is often required to generate a quality grid by state-of-the-
art grid generators. SmaggIce 2D permits the user to smooth the NURBS representation by reducing the
number of control points [5]. In this method, the user can only coarsely control the smoothed NURBS
representation of the ice geometry. This smoothing facilitates the subsequent gridding and numerical
simulation, but the lack of control makes it difficult to access the effects of smoothing on the CFD results.
In our approach, the user requires the NURBS curve to satisfy a tolerance, i.e., a characteristic distance
between the ice geometry and its representation. In this way, a user can more precisely control the extent
to which the representation is smoothed. Not only will this ease the difficulty of generating quality grids
over ice, but it will also aid investigation of the relation between ice roughness and aerodynamic
characteristics of the iced airfoil.

We developed a software package that uses a NURBS curve to represent a two-dimensional cross-section
of the ice surface as closely as desired by specification of a tolerance. Given a set of point data that
defines the two-dimensional ice geometry, the software finds a NURBS representation to within the
specified tolerance, which may be expressed either as a maximum distance or as a maximum root-mean-
square (rms) distance between equivalent points of the curve and the prescribed data. The user is given
various suitable options that further modify the NURBS representation, including the degree of the
NURBS basis functions and whether or not to fix end-point derivatives. The latter option was found to
permit the achievement of tighter tolerances. The code was applied to a wide range of experimental data
from the Icing Research Tunnel, and was found both robust and efficient in all cases. In this report, we
further document this software by providing requisite theory and typical results. The FORTRAN 77 code,
which is included as an appendix, is available for inclusion in the next version of SmaggIce 2D (v1.8).

Theory
We here review the theory of Non-Uniform-Rational-B-Splines. Our emphasis is upon generating a curve

() ((), ())u x u y u≡C that approximates prescribed data points kQ (0,1, ,)k mdata= … in two dimensions.
Both the theory presented below and the software are limited to a large subclass of NURBS curves, the
non-rational B-spline curves, to avoid nonlinearities associated with determining all parameters needed in
the more general class. B-spline curves (we henceforth drop the word non-rational) cannot exactly
represent certain curves (e.g., perfect circles) that a more general NURBS can. Nevertheless, a B-spline
can represent any smooth curve to within a tolerance, which is all that is needed in the present application.
A list of symbols is provided in Appendix A.

Preliminaries

We represent a B-spline curve as the finite sum,

 ,
0

() () ,
n

i p i
i

u N u
=

=∑C P (1)

with curve parameter u in the interval [0,1] , iP the control points in a two-dimensional space, and
, ()i pN u the pth degree B-spline basis functions. These basis functions are defined on a knot vector

 0{ , , }mknotU u u= … ,

where iu (0, ,)i mknot= … are the knots. For present purposes, the knot vector has the form

NASA/CR—2004-213071 3

 1 2 1

1 1

0,0, ,0, , , , ,1,1, ,1p p mknot p
p p

U u u u+ + − −

+ +

  =  
  

… … …"#$#% "#$#% , (2)

in which the unknown knots increase in numerical order in the open interval (0,1). Knowledge of the
degree p (which the user provides), the knot vector U, and the control points iP is required to fully
specify a B-spline. In the procedure to be described below, a sequence of approximating B-splines is
generated. When the procedure is successful, each spline in the sequence more closely represents the
given data.

Piegl and Tiller [6] furnish several properties of the basis functions and B-spline curves. We here list
those that are most relevant to the present application, and refer the interested reader to Piegl and Tiller
for additional details and references.

Non-zero basis functions: According to the local support property, Ni,p(u) = 0 for u outside the interval
1[,).i i pu u + + It follows that for any given value of the curve parameter u, at most only 1p + of the 1n +

basis functions that appear in Equation (1) are non-zero. Therefore, for any value of u, only 1p +
consecutive terms in the equation actually need to be determined and summed.

Efficient computation of basis functions: Given a value u of the curve parameter and a knot vector U,
the non-zero basis functions may be computed simultaneously and efficiently.

Relation between the number of knots, the number of terms in the sum, and the degree: These three
quantities are related by the simple equation

 1,mknot n p= + + (3)

after subtraction of one from both sides. In the iterative procedure discussed below, the degree p is fixed,
and mknot is increased so that the B-spline may more closely follow the ice geometry. This relation
requires an identical increase in n.

Continuity and differentiability of C(u): Given a knot vector of the assumed form, the associated B-
spline curve is continuous, infinitely differentiable in the interior of knot intervals, and at least p times
differentiable at each knot. The curvature of the B-spline is often required when determining the
placement of nodes along the curve for grid generation [9]. Calculation of curvature involves the second
derivative ().u′′C Continuity of curvature is assured if 3.p ≥

Endpoint interpolation of C(u): At 0u = all basis functions are identically zero except 0, (0) 1;pN =
similarly, at 1u = all basis functions are identically zero except , (0) 1.n pN = It follows from Equation (1)
that a B-spline must interpolate the first and last control points: 0(0) and (1) .n= =C P C P All B-splines of
interest to us also interpolate the first and last points of the prescribed ice geometry. This immediately
leads to the conclusion that for our purposes first and last control points respectfully coincide with the
first and last data points:

 0 0

n .mdata

=
=

P Q
P Q

 (4)

Endpoint derivatives of C(u): First-order derivatives '(0) and '(1)C C of a B-spline are related to the
first and last pairs of control points via the respective expressions [6]

NASA/CR—2004-213071 4

1 0

1

1
1

'(0) ()

'(1) ().
1

p

n n
mknot p

p
u

p
u

+

−
− −

= −

= −
−

C P P

C P P
 (5)

These equations may be solved for control points 1 -1and :nP P

1
1 0

1

'(0)

1 '(1)

p

n
n mdata

u
p

u
p

+

−

= +

−
= −

P Q C

P Q C
 (6)

The above relations will be useful in the development of B-spline representations that satisfy prescribed
endpoint derivative conditions.

Global Approximation by a B-Spline

Piegl and Tiller [6] offer a procedure for the global approximation of prescribed data by a B-spline curve
provided the endpoint derivatives are free. We summarize their method below, and later extend it to the
case for which endpoint derivatives are specified. In both cases, a suitable global approximation is
obtained by iteration. The user provides certain information such as the point data to be approximated, a
tolerance to be satisfied, and an initial value of n. Based upon this information, an initial approximating
B-spline is developed using the method of least-squares. This approximation is tested against the
tolerance requirement. If the requirement is met, the approximation is accepted. If not, the number of
knots and terms in Equation (1) is increased and a new B-spline is generated. This process continues until
the specified tolerance is achieved or the process fails. Failure could occur, e.g., if the specified tolerance
is too small.

Free Endpoint Derivatives

The data kQ , degree p of the approximating B-spline, an initial value of n, and a tolerance requirement
are presumed given. Because we seek an approximating B-spline that interpolates first and last data
points, first and last control points are given by Equation (4). The remaining control points and the knot
vector are obtained as follows. We first parameterize the given data; i.e., a parameter value is assigned to
each data point. While there are several ways in which this can be done, the chord length method is
generally satisfactory. Let d be the total chord length,

1

1
0

,
mdata

k k
k

d
−

+
=

= −∑ Q Q (7)

and require first and last points to correspond to the respective parameter values 0 0u = and 1.mdatau =
The remaining data parameters are then defined by the recursive equation

 1
1

k k
k ku u

d
−

−

−
= +

Q Q
 (8)

for 1, , 1.k mdata= −… These data parameters remain unchanged throughout the rest of the analysis. Data
points can be numbered from either end of the ice geometry. To be definite, we assume that points are
numbered consecutively from the upper to lower airfoil surface.

NASA/CR—2004-213071 5

An initial knot vector must be generated that in some sense corresponds to the distribution of data
parameters. Recall from Equation (2) that the first and last 1p + knots are identically zero and unity,
respectively. To determine the remaining knots, we define a new temporary variable d via the expression

 1,
1

mdatad
n p

+=
− +

 (9)

which represents the average number of data points per knot span of nonzero length. The remaining knots
are found from the following equations [6]:

1

int()

(1) for 1, ,p j i i

i j d
j d i

u u u j n p
α

α α+ −

= ∗
= ∗ −
= − ∗ + ∗ = −…

 (10)

Here, the staircase function int()y x= is the largest integer such that .y x≤ The above definition is
successful in placing at least one data parameter ku in every knot span of nonzero length if 1.d ≥
Provided this is true, a key symmetric matrix (T ,N N which is encountered below) in the approximation
procedure is positive definite and well-conditioned [6-8], at least in theory.

Determination of the internal control points (1, , 1)i i n= −P … is the final major step in defining the initial
B-spline. These control points are selected so as to minimize the sum of the squared distances of the curve
from data points 1 1, , :mdata−Q Q…

1

2

1
()

mdata

k k
k

u
−

=

−∑ Q C

Take the derivative of this expression with respect to control point iP and set the result to zero. This
operation yields 1n − equations that can be collectively represented by the matrix equation

 ()T .=N N P R (11)

Here, N is the (1) (1)mdata n− × − matrix

1, 1 1, 1

1, 1 1, 1

() ()

() ()

p n p

p mdata n p mdata

N u N u

N u N u

−

− − −

 
 =  
 
 

N
…

& ' &
(

, (12)

whose elements consist of basis functions evaluated at certain values of the data parameters. Recall that
no more than 1p + of the basis functions are non-zero for any given value of the curve parameter u.
Thus, each row of N contains at most 1p + non-zero entries. Also appearing in Equation (11) is a
(1) 2n − × matrix P of unknown control points,

1

1

,

n−

 
 =  
 
 

P
P

P
& (13)

and a (1) 2n − × matrix R:

NASA/CR—2004-213071 6

1

1,
1

1

1,
1

()

.

()

mdata

p k k
k

mdata

n p k k
k

N u

N u

−

=

−

−
=

 
 
 
 =
 
 
 
 

∑

∑

R

R

R

& (14)

Each (1 2) row vector k× R that appears above is defined by the expression

 0, 0 ,() ()k k p k n p k mdataN u N u= − −R Q Q Q (15)

with 1, , 1k mdata= −… . (Recall that (,)k k kx y≡Q is defined within a two-dimensional space, which
explains why P and R each have two columns and why kR is a two-element vector.) Equation (11) thus
represents two linear systems of equations having the same matrix coefficient but with different right-
hand sides.

Given that each knot span of non-zero length contains at least one data parameter, the (1) (1)n n− × −
matrix TN N (with superscript T denoting the transpose operation) is symmetric, positive definite, and in
principle well-conditioned. (However, in practice the matrix can become singular as n becomes large and
d in Equation (9) approaches unity. This is presumably due to limitations of finite arithmetic on a digital
computer.) Moreover, it has a semi-bandwidth of 1p + , and can be stored in a compact form. The
Cholesky method efficiently factorizes the matrix. Control points 1 1, , n−P P… are then easily found via
back substitution.

Solution of Equation (11) leads to a complete B-spline representation of the ice data. The next major step
is to determine whether or not this representation satisfies the specified tolerance requirement. Two such
tolerance criteria are implemented. The user may either specify a maximum tolerance requirement,

 max max1 1
max () ,k kk mdata

d u ε
≤ ≤ −

= − ≤C Q (16)

or a rms tolerance requirement:

1
2

1
rms rms

()
.

1

mdata

k k
k

u
d

mdata
ε

−

=

−
= ≤

−

∑ Q C
 (17)

In the above, maxd is the maximum separation distance of all the distances ()k ku −C Q , maxε the
maximum tolerance, rmsd the rms distance, and rmsε the rms tolerance. If the specified tolerance
requirement is satisfied, the B-spline is accepted as a suitable approximation to the ice geometry. If not, a
new knot vector having additional knots is created, and a new B-spline approximation is generated using
the above procedure. This cycle is repeated until the desired tolerance requirement is satisfied. Details
concerning how the new knot vector is generated and how the tolerance criteria are implemented are
reserved for a later section.

Before leaving this section, we note that ()kuC is generally not the closest point on the curve to data
point .kQ Nevertheless, the distance ()k ku −C Q , which appears in both tolerance criteria, is useful and
convenient for the intended use. An alternative, more exact maximum tolerance criterion,

 ()min max1 1
max () ,k kk mdata

u ε
≤ ≤ −

− ≤C Q

could be used. Here u = (uk)min is the parameter value that minimizes the distance () ku −C Q for the kth
point. Determination of each u = (uk)min is a nonlinear problem that can be solved, e.g., using a Newton

NASA/CR—2004-213071 7

iteration procedure [6]. The advantage in using the latter tolerance requirement in the present application
does not appear to offset the extra required computational effort: up to 1mdata − values of u = (uk)min
are required per loop of the iteration that ultimately results in an acceptable B-spline curve. In any case,
because ()min()k ku − ≤C Q () ,k ku −C Q we are assured that any curve that satisfies Equation (16) also
satisfies the above exact requirement. Our decision to use ku u= rather than u = (uk)min may result in a
larger final value of n than that needed to meet the above exact tolerance requirement.

Fixed Endpoint Derivatives

Fixing of the endpoint derivatives requires a straightforward modification of the above least-squares
procedure. Recall from Equation (5) that the endpoint derivatives of a B-spline curve are related to the
first and last pairs of control points. If we specify these derivatives, Equation (6) gives control points

1 1 and n−P P so that 0 1 1, , , and n n−P P P P are all known prior minimizing the sum of squared distances. In this
case, we minimize the sum with respect to the remaining control points: 2 2, , .n−P P… The least-squares
procedure is altered only in that matrices N, P, R, and vector kR must be redefined. If endpoint
derivatives are fixed, N is the (1) (3)mdata n− × − matrix

2, 1 2, 1

2, 1 2, 1

() ()

() ()

p n p

p mdata n p mdata

N u N u

N u N u

−

− − −

 
 =  
 
 

N
…

& ' &
(

, (18)

and (3) 2n − × matrices P and R have the respective new definitions

2

2n−

 
 =  
 
 

P
P

P
& (19)

and

1

2,
1

1

2,
1

()

.

()

mdata

p k k
k

mdata

n p k k
k

N u

N u

−

=

−

−
=

 
 
 
 =
 
 
 
 

∑

∑

R

R

R

& (20)

Finally, each vector kR is defined by

 ()0, 0 1, 1 1, 1 ,() () () () ,k k p k p k n p k n n p k nN u N u N u N u− −= − + + +R Q P P P P (21)

with 0 1 1, , , and n n−P P P P given by Equations (4) and (6). The unknown control points are found by
solving matrix Equation (11) with these modified definitions.

Software Implementation
In this section, we discuss how the two tolerance requirements are implemented in the software, and
provide formulas for calculation of default values of endpoint derivatives. This background will prove
important in understanding sample results produced by the code as discussed in the next major section.
Brief descriptions of major elements of the code may be found in Appendix B, and the code itself is given
in Appendix C.

NASA/CR—2004-213071 8

Maximum Tolerance

The maximum tolerance requirement, Equation (16), is implemented as follows: Beginning with 1,k =
the distance ()k ku −C Q is compared with the maximum tolerance. If the distance is less than or equal
to max ,ε k is incremented by one and the test is repeated. If the test fails for any k, the knot span associated
with ku (i.e., the span such that 1i k iu u u +≤ <) is labeled as non-converging. To avoid unnecessary
evaluations, the remaining distances within that knot span are skipped. The next distance compared with

maxε is that corresponding to the first ku located within the next knot span. The test continues until all
knot spans are labeled as converging or non-converging.

If the specified tolerance is not achieved by all knot spans, a new knot vector is generated as follows: A
new knot is inserted at the midpoint of all non-converging knot spans, and both n and mknot are increased
by the number of added knots. Next, the knot vector is inspected to insure that each knot span of nonzero
length contains at least one data parameter .ku If it does, the above least-squares procedure is repeated to
generate a new set of internal control points and a new B-spline curve. The maximum tolerance criterion
above is checked again. If the maximum distance maxd from the prescribed data is less than or equal to the
specified tolerance max ,ε the iterative procedure ends. If the tolerance is not achieved, a new knot vector
is generated by inserting a new knot at the midpoint of each new non-converging knot span, and the cycle
repeats.

A knot vector formed by repeated insertion of knots may have one or more knot spans of nonzero length
that are empty, i.e., ones that do not contain at least one data point parameter ku . In this case, the matrix

TN N is no longer guaranteed to be positive definite and well-conditioned. Provided the new value of n
is sufficiently small (1n mdata p≤ + −), a completely new knot vector is generated using Equation (10)
that has at least one data point parameter located within each knot span of nonzero length. A new B-spline
is generated based upon this new knot vector, and the iteration procedure continues as usual. If the new
value of n is too large (1n mdata p> + −), the procedure will abort.

Root-Mean-Square Tolerance

The maximum tolerance requirement of Equation (16) simply requires that the maximum distance that
separates the ice geometry from equivalent points on the B-spline curve is less than a specified distance
called the maximum tolerance. This measure of closeness of the spline to the ice geometry does not
distinguish between a curve that is close almost everywhere with the exception of one or a few values of

ku and one that is far (but less than or equal to the maximum tolerance) almost everywhere. The ability to
specify a rms tolerance, rms ,ε permits the user to require the curve to be close to the data in a rms sense.
We also point out that the rms distance rms ,d which is defined in Equation (17), is closely related to the
actual quantity that is minimized in the least-squares procedure.

The iterative procedure described above to achieve the maximum tolerance criteria is modified to satisfy
the rms requirement. In this case, the user must supply an initial maximum tolerance max ,ε a rms
tolerance rms ,ε and a scalar α. The rms tolerance is restricted to the interval max(0,)ε while α must lie in
the interval (0,1); the default value given α is 0.9. During iterations, the initial maximum tolerance
requirement is satisfied as described above. Prior to exiting the loop, the rms tolerance test is performed.
If rms rmsd ε≤ , the loop exits normally. Otherwise, the maximum tolerance is reduced according to the
expression max maxdε α= ∗ and each knot span is re-examined to determine the non-converging knot spans
relative to the new maximum tolerance. Knots are inserted at the midpoint of each such span, and
iterations continue until the new maximum tolerance requirement is satisfied. The rms criterion is then
tested again. The loop exits normally when both the modified maximum tolerance and the rms tolerance
requirements are met.

NASA/CR—2004-213071 9

Endpoint Derivatives

First-order endpoint derivatives are specified in polar coordinates. The angle must be measured from the
positive x axis and specified in units of degrees. Because these derivatives are vectors, both direction and
magnitude must be supplied for each endpoint. For convenience, default values for these derivatives are
calculated based upon finite differences of the first and last pairs of data points:

1 0 1 0

1 0 1

1 1

1 1

'(0)

'(1)
1

mdata mdata mdata mdata

mdata mdata mdata

u u u

u u u
− −

− −

− −
= =

−
− −

= =
− −

Q Q Q QC

Q Q Q QC
 (22)

Before leaving this section, we note that these derivatives are taken with respect to the curve parameter u,
and whether this parameter is increasing or decreasing when moving along the B-spline ultimately
depends upon the sense of direction of the original data. The user must take this into account when
specifying non-default values for '(0) and '(1).C C

Application: Sample Results for an Ice Geometry
The FORTRAN 77 code was compiled and run on a 1.1 GHz personal computer (Intel Pentium III
processor under Linux). Suitable B-spline approximations that corresponded to a wide range of tolerances
were obtained for three ice geometries, which were provided by the Icing Research Tunnel. To illustrate
typical behavior, we investigate several representations for one ice geometry.

Most of our runs – and all discussed here – used cubic B-splines. The few runs conducted with degree
4or 5p = yielded B-splines that, on a graph at least, appeared equivalent to a cubic B-spline for the same

geometry and parametric values. No novel features were discovered in these runs.

Figure 1 shows the front portion of a clean airfoil, the attached ice, and an approximating B-spline. In this
case, we required the B-spline to satisfy a maximum tolerance of 2

max 1.0 10 .ε −= × Endpoint derivatives
were free, and n was set initially equal to the default value of three. The original data was normalized
with respect to the chord length; all lengths, including tolerances, are therefore similarly normalized in
this and all subsequent figures. A total of 525 points defines the full ice geometry. A significant fraction
of these points are denoted in the figure by small plus signs. Though in this figure one cannot determine
the particular point ()kuC on the B-spline curve that corresponds to the kth data point ,kQ it appears that
every point on the B-spline curve is located within the maximum distance 21.0 10−× of some point on the
ice geometry.

NASA/CR—2004-213071 10

Figure 1: Global view of front portion of clean airfoil, ice data, and approximating
B-spline (3;p = 2

max 1.0 10 ;ε −= × free endpoint derivatives; initial 3n =)

Figure 2: Close-up view of three B-spline representations of ice data at the indicated moderate
values of the maximum tolerance (3;p = free endpoint derivatives; initial 3n =)

-0.02 0 0.02 0.04 0.06 0.08 0.1

-0.02

0

0.02

0.04

x

y

Clean airfoil
Ice data
B-spline

-0.02 0 0.02 0.04 0.06 0.08 0.1

-0.04

-0.02

0

0.02

y

x

Clean airfoil
Ice data
B-spline

-0.03 -0.02 -0.01 0 0.01

0.01

0.02

0.03

x

y

Clean airfoil
Ice data
0.01
0.005
0.001

NASA/CR—2004-213071 11

Figure 2 shows a magnified section of the clean airfoil, the ice data, and three approximating splines near
the upper icing limit. Maximum tolerances of the approximating curves are, in decreasing order,

2 3 3
max 1.0 10 ,5.0 10 , and 1.0 10 .ε − − −= × × × Visual examination shows that the average distance between a

B-spline and the ice data correlates with the specified maximum tolerance. At this scale one can see that
all three B-spline curves interpolate the first point 0Q of the ice data as required. The consequence of not
specifying the endpoint derivatives is also seen: the slopes of the three splines differ enormously at the
upper endpoint.

The beginning of the ice data and a B-spline (the one with the smallest tolerance in Figure 2) is shown at
greater magnification in Figure 3. Circles on the B-spline curve represent () for 0, ,10.ku k =C … Observe
that the curve passes somewhat closer to each point kQ (indicated by plus signs) than the nominal
separation distance ()k ku −C Q .

Figure 3: Magnified view near upper icing limit showing relation between
k() and kuC Q (3;p = free endpoint derivatives; max 0.001;ε = initial 3n =)

The two B-spline curves that appear in Figure 4 were generated with the maximum tolerance set at
4

max 1.0 10 .ε −= × The curve with large wiggles near the endpoint was constructed with free endpoint
derivatives; the other curve had its endpoint derivatives specified as the default values. Both curves were
generated using the appropriate default initial values for n (3n = for the free endpoint derivative curve;

4n = for the fixed endpoint derivative curve). The success of the second curve as a suitable representation
of the ice geometry is due to specification of the endpoint derivatives. (One might argue that the different
initial values used for n might also contribute to the observed difference in these B-splines because the
initial knot vectors are different. However, for this geometry we found that the same B-spline is obtained
in the free endpoint derivative case whether an initial value of 3n = or 4n = is used. This is because at

2 3 4 5 6 7 8

x 10
-3

0.009

0.01

0.011

0.012

0.013

0.014

x

y

Clean airfoil
Ice data
C(uk)

B-spline, C(u)

Q7

C(u7)

NASA/CR—2004-213071 12

Figure 4: Effect of fixing endpoint derivatives in a B-spline
(3;p = max 0.0001;ε = initial 4n =) at small tolerances

Figure 5: Close-up view of three B-spline representations of ice data at the indicated moderate
values of the maximum tolerance (3;p = fixed endpoint derivatives; initial 3n =)

0.002 0.004 0.006 0.008 0.01

0.008

0.01

0.012

0.014

x

y

Clean airfoil
Ice data
Free
Fixed

-0.03 -0.02 -0.01 0 0.01

0.01

0.02

0.03

Clean airfoil
Ice data
0.01
0.005
0.001

NASA/CR—2004-213071 13

some stage of the iterative process, both procedures use Equation (10) to form a new knot vector for the
same value of n. All subsequent steps in the two procedures to generate the final B-splines are then
identical.) This same behavior was found in corresponding representations for both of the other ice
geometries investigated. It is widely known that B-splines have a tendency to exhibit wiggles when
approximating noisy data at small tolerances [6]. We note that, despite specification of the endpoint
derivatives, unacceptably large wiggles in the B-spline representation may arise at smaller tolerance
levels. These were observed for the present geometry with a maximum tolerance of 5

max 2.5 10ε −= × .

It may be advantageous to fix the endpoint derivatives at more moderate levels of tolerance. For example,
the slopes of the iced airfoil near the icing limits are sometimes relevant in the merging of the ice
representation with the clean airfoil to avoid the introduction of significant discontinuities [9]. In any
case, specification of endpoint derivatives can have a dramatic effect on the entire B-spline, not just near
the endpoints. Figure 5 shows three B-splines for which the endpoint derivatives were set to their default
values; all curves in the figure appear to have the appropriate endpoint derivative. The maximum
tolerances of the three splines in Figure 5 are the same as those in Figure 2; corresponding curves in the
two figures should be compared. These two figures, along with Figure 4, suggest the following two
general rules: a) the effect of specifying an endpoint derivative decreases with distance (along the curve)
from the endpoint, and b) the distance over which the endpoint derivative has a significant effect is
inversely related to the tolerance. If the tolerance is sufficiently large, as it is for the two 2

max 1.0 10ε −= ×
curves, the curves can appear significantly different from each other for the whole domain. Furthermore,
by controlling the values of the endpoint derivatives, one can obtain intermediate representations of the
ice geometry. These observations appear consistent with the local support property of the basis functions
and the (frequently) inverse relationship between tolerance and the number of knot spans in the resulting
B-spline.

We note that in those runs reported above with acceptable representations of the ice geometry (i.e., no
significant wiggles), the ratio max max/d ε varied over the range (0.77, 0.99). Moreover, the variation of this
ratio was not monotonic with respect to the tolerance. That the ratio is not constant should not be
unexpected because the algorithm does not control this quantity beyond the requirement that it be located
within the interval (0,1]. Similarly, the algorithm does not control the ratio rms rms/d ε when the rms
tolerance is specified; it too is limited to the interval (0,1]. The variation of these ratios has an interesting
potential consequence when two B-spline approximations of the same ice geometry is generated with
either the maximum or rms tolerances slightly different but all other parameters unchanged. The usual
expectation is that the distance max rms or ,d d depending upon which tolerance is specified, will be smaller
for the spline with smaller specified tolerance. While this pattern frequently will be true, there may be
exceptions (e.g., maxd larger for the spline generated with smaller maxε) because the corresponding ratio is
not constant. This behavior in no way detracts from the anticipated use of the software, which is to easily
generate in a controlled manner B-spline representations of ice geometries that have a wide variety of
roughness levels. Other software will quantify the roughness characteristics of the resulting B-spline
representations, including the characteristic distance of the curve from the data.

Summary
A FORTRAN 77 program that generates a smoothed B-spline representation of a given ice geometry has
been developed. The user specifies a maximum tolerance or a root-mean-square tolerance along with
other necessary parameters. The program returns a B-spline curve that satisfies the given tolerance. The
software permits the rapid generation of several B-splines that satisfy a wide range of tolerance
requirements. This approach represents a significant improvement over the current technique of
smoothing in SmaggIce 2D, in which selected control points are deleted. This program was developed for
possible incorporation into the next version of SmaggIce 2D (v1.8).

NASA/CR—2004-213071 14

Any B-spline curve that approximates the ice data to within a given tolerance is not unique. Several
additional parameters are available to the user to produce a different B-spline representation of the ice
data. Sometimes use of these additional parameters is necessary to obtain a useful representation of the
ice geometry. For example, for each of three different ice geometries investigated, it was found that if the
endpoint derivatives were free and the maximum tolerance sufficiently small, the resulting approximating
B-spline curve possessed large wiggles near an endpoint. In each of these cases, also requiring
satisfaction of suitable endpoint derivative constraints led to an appropriate representation.

This Year 1 report discusses the theory behind the program and illustrates its use with respect to a given
ice geometry. The program itself appears in Appendix C.

NASA/CR—2004-213071 15

References

1. J.J. Chung, Y.K. Choo, A.L. Reehorst, M.G. Potapczuk, and J. Slater, “Navier-Stokes Analysis of the
Flowfield Characteristics of an Ice Contaminated Aircraft Wing,” AIAA–99–0375, Reno, NV,
January 1999.

2. J.J. Chung, A.L. Reehorst, Y.K. Choo, and M.G. Potapczuk, “Effect of Airfoil Ice Shape Smoothing
on the Aerodynamic Performance,” AIAA–98–3242, Presented at the 34th AIAA/ASME/ASEE Joint
Propulsion Conference & Exhibit, Cleveland, OH, July 1998.

3. B. Zhu, X. Chi, and T.I-P Shih, “Computing Aerodynamic Performance of 2D Iced Airfoils: Blocking
Strategy and Convergence Rate,” AIAA–2002–3049, 20th Applied Aerodynamics Conference, St.
Louis, Missouri, June 24-26, 2002.

4. X. Chi, B. Zhu, T.I-P. Shih, H.E. Addy, and Y.K. Choo, “CFD Analysis of the Aerodynamics of a
Business-Jet Airfoil with Leading-Edge Ice Accretion,” AIAA–2004–0560, Presented at the 42nd
Aerospace Sciences Meeting & Exhibit Reno, NV, January 2004.

5. M.B. Vickerman, Y.K. Choo, H.W. Schilling, M. Baez, D.C. Braun, and B.J. Cotton, “Toward an
Efficient Icing CFD Process Using an Interactive Software Toolkit—SmaggIce 2D,” AIAA Paper
2002–0380, Presented at the 40th Aerospace Sciences Meeting & Exhibit, Reno, NV, January 2002.

6. L. Piegl and W. Tiller, The NURBS Book, 2nd ed., Monographs in Visual Communication, Springer-
Verlag, New York, 1997.

7. C. De Boor, A Practical Guide to Splines, New York: Springer-Verlag, 2001.

8. G. Farin, Curves and Surfaces for CAGD: A Practical Guide, 5th ed.. Academic Press: San Diego,
2002.

9. D.S. Thompson and B.K. Soni, ICEG2D—An Integrated Software Package for Automated Prediction
of Flow Fields for Single-Element Airfoils with Ice Accretion, NASA/CR—2000-209914, February
2000.

10. LAPACK—Linear Algebra PACKage, <http://www.netlib.org/lapack/>, November 2003.

NASA/CR—2004-213071 16

Appendix A—List of Symbols

Symbols Definition

maxd Maximum separation distance between B-spline and ice data; defined in Equation (16)

rmsd Rms separation distance between B-spline and ice data; defined in Equation (17)

mdata Last index of ice data

mknot Last index of knot vector

n Last index of control points; last i-index of basis functions , ()i pN u

p Degree of B-spline curve

u Curve parameter, 0 1u≤ ≤

iu ith knot; 0, ,i mknot= …

ku kth data parameter; defined in Equation (8); 0, ,k mdata= …

()uC Two-dimensional B-spline curve; functionally dependent upon curve parameter u

()u′C First derivative curve of B-spline; () () /u d u du′ =C C

, ()i pN u ith B-spline basis function of degree p; 0, ,i n= … ; functionally dependent upon curve
parameter u

N Matrix of basis functions; defined in Equation (12) or (18)

P Matrix of control points; defined in Equation (13) or (19)

iP ith two-dimensional control point; 0, ,i n= …

kQ kth two-dimensional data point; 0, ,k mdata= …

R Matrix defined in Equation (14) or (20)

kR Vector defined in Equation (15) or (21)

U Knot vector; form given in Equation (2)

α Factor used to generate new maximum tolerance from relation max maxdε α= ∗ during iteration
to satisfy rms tolerance

maxε Maximum tolerance

rmsε Rms tolerance

NASA/CR—2004-213071 17

Appendix B—Program Description

Main Program

This software is intended to be incorporated into SmaggIce 2D, which has its own GUI interface. A
simple text-based interface with users was therefore adopted for development purposes. All input and
output is controlled by the main program. The user sequentially enters the following data:

1. Run number (two digits)

2. Name of data file

3. Are endpoint derivatives specified? If yes, either accept default values or provide values.

4. Degree p of B-spline (default value is 3; must be 3, 4, or 5.)

5. Initial value of n (default value is the minimum value, which is or 1p p + depending on whether
endpoint derivatives are free or fixed)

6. Maximum tolerance (default value is 3
max 1.0 10ε −= ×)

7. Enter rms tolerance if desired. If so, factor α (default value: 0.9α =) must also be entered.

This concludes the user’s input.

The data file is presumed to be an ASCII file structured as follows:

Line 1: Number of data sets (1 for just ice data or 2
for both clean and iced airfoil data)

Line 2: Number of points in first data set

Lines 3 to end

 of data set 1:

x-y data of first data set

Next line: Number of point in second data set (if
present)

Next line to end: x-y data of second data set

The first data set may represent just the ice geometry or the iced airfoil. The second data set, if present,
represents the clean airfoil. The program reads in the data file, and if necessary separates the ice data from
the airfoil data. Data is written to appropriate file(s), and ice data is retained in memory to calculate the
approximating B-spline curve using the iterative procedure described previously.

The most important file exported by the main program is nurbs??.dat. It contains the data that defines the
approximating B-spline curve. Here, ?? denotes a two-digit run number. The file has the following
format:

Line 1: p (degree)

Line 2: n (final value)

Lines 3: mknot (final value)

Next 1mknot + lines: Knot vector

Next 1n + lines: Control points (x-y format)

NASA/CR—2004-213071 18

The table below summarizes all the files exported by the main program. Following the table are brief
statements of purpose for each subroutine included in the program file.

File Name Description

clean.dat Clean airfoil data (x-y format)

cukb??.dat (), 0, ,ku k mdata=C … (x-y format)

ice.dat Ice geometry (x-y format)

icecv??.dat B-spline curve (x-y format)

log.txt Log file of run

nurbs??.dat NURBS data file

sum??.txt Summary of run

FindSpan

The semi-closed interval 1[,)i iu u + represents the ith knot span. FindSpan is a function that, given the
curve parameter u, returns the knot span in which u is located. The value 1u = is an exception to the
above definition; it is assigned knot span n.

FindSpanA

If u represents a 1D array of curve parameter values, subroutine FindSpanA returns a 1D array of the
corresponding knot span indices.

NBasis

Given the scalar u, its knot span index i, degree p, and knot vector U, subroutine NBasis computes the set
of nonzero basis functions , ,(), , ()i p p i pN u N u− … and returns their values in the 1D array N.

NBasisA

Given the 1D array u, a corresponding set of knot span indices, degree p, and knot vector U, subroutine
NBasisA computes the full set of nonzero basis functions, returning them in the 2D array NA. The jth
column of NA corresponds to the jth element of u.

Cparam

Given the point data 0 , , mdataQ Q… for the ice, subroutine Cparam calculates the set of data parameters
0 , , mdatau u… according to Equation (8), returning their values in the 1D array ukb.

Knotvec

Subroutine Knotvec generates a knot vector U based upon Equation (10).

NCurve

Subroutine NCurve computes the point (,) ()x y u= C on the B-spline curve for the scalar curve parameter
u.

NASA/CR—2004-213071 19

NCurveA

Subroutine NCurveA computes the set of (x,y) points on the B-spline curve that correspond to a 1D array
of curve parameters.

Rkarray

Subroutine Rkarray computes 1 1, , mdata−R R… corresponding to either Equation (15) or (21), depending
upon whether the endpoint derivatives are free or fixed, respectively.

RightHandSide

Subroutine RightHandSide computes R according to either Equation (14) or (20), depending upon
whether the endpoint derivatives are free or fixed, respectively.

ABMatrix

Subroutine ABMatrix computes the matrix TN N and stores it in an upper band form that is suitable for
the LAPACK library routine DPBSV [10]. (Subroutine DPBSV solves the linear system, Equation (11),
based upon the Cholesky method.) The matrix N is given either by Equation (12) or (18), depending upon
whether the endpoint derivatives are free or fixed, respectively.

SpanTest

Subroutine SpanTest returns in the 1D array nonspan the indices of all nonconforming knot spans; i.e.,
those spans that do not satisfy the tolerance requirement max() .k ku ε− ≤C Q

Deviations

Subroutine Deviations returns the maximum separation distance max ,d the root-mean-square deviation
,rmsd and a 2D array containing the (x,y) values corresponding to 0(), , ().mdatau uC C… The quantities

max rms and d d are respectively defined by Equations (16) and (17), and in the program correspond to
FORTRAN variables epmax and rms.

NewU

Subroutine NewU generates a new knot vector by inserting a new knot at the midpoint of every
nonconforming knot span.

Verify

Subroutine Verify checks each knot span to insure that each contains at least one value of the set of data
parameters 0 , , .mdatau u…

NASA/CR—2004-213071 20

Appendix C—FORTRAN 77 Program
**
*

 program globalapp

*

**

* Program Summary

*

* Given a set of Q=(x,y) data points of length mdata + 1, two

* integers n and p (such that 3 <= p <= n << mdata), and a maximum

* distance criterion ep (0 < ep <= 0.1, say), the program globalapp

* employs an iterative least-squares procedure to calculate a NURBS

* curve of degree p that approximates the data to within the nominal

* distance ep. Optionally, the user may also specify a root-mean

* square distance criterion (eprms). Endpoint derivatives may be free

* (default) or fixed. All NURBS curves generated by this program have

* endpoints that exactly coincide with the prescribed ice data. The

* first and last control points are equal to the respective

* endpoints.

*

*

* Data is presumed read in a counter-clockwise direction about the

* airfoil. This is only important in referencing upper and lower

* endpoints of the ice region.

*

* After entry of the requisite data, the program calculates a knot

* vector, and a do while loop is entered. A matrix and right-hand

* side vector (2 columns) is then generated with control points as

* unknowns. The matrix is banded, symmetric, and positive

* definite. A special LAPACK solver that uses the efficient Cholesky

* method is then used to obtain the unknown control points. The

* resulting NURBS curve is used to determine whether the distance

* criterion eptemp (initially, the same as ep) is satisfied. If not,

* n is appropriately increased by the insertion of knots at the

* midpoints of non-converging spans, thereby creating a new knot

* vector. The do while loop is then entered again from the top, and

* the cycle is repeated until the NURBS curve satisfies the

* tolerance requirement, or the resulting matrix is singular. If at

* any stage the newly created knot vector has a span that does not

* contain a value of the parameterized curve, the whole knot vector

* is recalculated by redistribution based upon the original

* algorithm. If the redistributed knot vector also contains one or

* more spans without a value of the parameterized curve, the do

NASA/CR—2004-213071 21

* while loop is exited, and the approximation fails.

*

* If eprms is specified, the iteration procedure is slightly

* modified as follows. The specified maximum distance specification

* is first met as indicated above. If eprms is specified, the

* root mean squared distance is compared with eprms. If this

* specification is satisfied, the iteration loop is exited. If not,

* the maximum distance specification eptem is reduced by a factor alpha,

* 0 < alpha < 1, and iterations continue until this new maximum

* distance specification is met. The rms specification is then

* checked again. The cylce repeats until the rms specification

* is satisfied.

* The procedure when endpoint derivatives are specified is nearly

* the same. An endpoint derivative is fully specified by a polar

* angle and a magnitude. By default, first-order finite difference

* calculations are used to prescribe these derivatives. After

* a knot vector is first defined as above, the derivative

* information is used to determine the 2nd and next to last

* control points. The do while loop is then entered as above.

* Though governing equations differ slightly in this case, a

* linear system of equations is solved to find the remaining

* unknown control points. A modified knot vector is then created

* in a manner similar to that above. If at any time the knot

* vector needs to be redistributed, the second and second to last

* control points are recalculated. The fixed derivative algorithm

* was specially developed for this program, and is not found in the

* reference below.

*

* After a NURBS curve is found that satisfies specified tolerance(s),

* the requisite information of the NURBS curve is saved

* to a file for later reconstitution. A log file is also kept,

* as well as a file that summarizes the results of the analysis.

* Also output is an x-y data file that represents the generated

* NURBS curve for convenient graphing.

*

**

* Reference

*

* Piegl, L. and Tiller, W., The NURBS Book, 2nd edition, New York:

* Springer-Verlag, 1997.

*

**

NASA/CR—2004-213071 22

*

* NOTE: In Piegl and Tiller, the first index of most vectors begin

* with zero. To avoid confusion, we follow that convention as

* appropriate. We also use indices 1 and 2 to denote x and y

* components of certain arrays.

*

**

*

* Record of Revisions:

*

* Date Programer Description of Change

* ==== ============ =======================

* 05/20/03 Loren H. Dill Original code

* 05/22/03 L.H. Dill Added rms tolerance

* 08/06/03 L.H. Dill Increased saved digits

* in output (nurbs??.dat)

*

**

* *

* Parameters *

* *

* mcleandatamax Largest index of x-y points output to data file

* for clean airfoil (file: clean.dat)

* mdatamax Largest anticipated index of input data vector,

* clean plus ice

* m2datamax Largest index of output x-y data vector for rough

* ice (along NURBS curve) (file: icecv??.dat)

* nmax Largest anticipated index of control points

* nredistmax Largest index of nvalues vector

* pmax Highest anticipated degree of NURBS curve

*

**

* Major Input Variables

*

* mdata Number of x-y data points (less 1 after initial index set

* to 0). mdata is initially read in, and depending upon

* dataset format, may be total number of ice+clean data

* points. Thoughout the main part of the program, mdata

* represents the number of ice data less one.

* Q x,y ice data points -- a 2D array

* p Desired degree of NURBS curve

* n Largest index of NURBS curve. Initially given and then

* increased during the iteration procedure

NASA/CR—2004-213071 23

* phi0, phiM First and last polar angles corresponding to desired

* slopes of NURBS curve at beginning and end. (in degrees).

* D0L, DmL Magnitude of first derivative vectors of NURBS curve

* at beginning and end

* sD0L,sDmL Scale factors, relative to default values, of the

* magnitude of first derivative vectors of NURBS curve

* at beginning and end

* ep Desired maximum tolerance between NURBS curve and prescribed

* data

* eprms Desired maximum rms tolerance between NURBS curve and

* prescribed data

* run A two-digit character array designated the run number. Used

* to associate output file names with given runs.

* infilename A character array of length 12 used to identify

* the file containing the x-y ice data.

**

*

* Major Working Variables

*

* epmax Calculated value of maximum distance from curve to the

* ice data. Actually a nominal value.

* eptemp If only maximum tolerance is specified, eptemp = ep.

* If eprms tolerance is specified, eptemp < ep if eprms

* is not achieved. eptemp is periodically reduced until

* eprms is achieved.

* mknot Largest index of knot vector U, mknot = n+p+1

* INFO Variable from LAPACK routine dpbsv that solution

* of linear matrix equation was successful or not

* inonspan number of nonconverging knot spans

* nonspan vector containing spans that have not converged

* nvalues a 1-D array containing the n values for which

* the knot vector was redistributed. Only last

* nredistmax values are retained.

* offset Derivative flag.

* offset = 1 if endpoint derivatives are not set.

* offset = 2 if they are

* P Control points

* ukb array containing values of parameterized curve; each

* value of array corresponds to respective data point

* spanA an array that contains the span indices of ukb relative

* to a given knot vector.

* u Curve parameter

* U Knot vector

NASA/CR—2004-213071 24

* Unew A new knot vector awaiting verification before acceptance

* NA Array containing the non-zero basis functions for each

* element of a parameter array

* Rk array containing the Rk values of Piegl & Tiller, p 411,

* if end derivatives are free, and a modified version

* if end derivatives are fixed.

* R array representing right-hand side of eq. 9.65 of Piegl

* & Tiller, p 411, if end derivatives are free, and a

* modified version if end derivatives are fixed.

* NTNB matrix (in banded form) for linear eq. 9.65 of P&T,

* if end derivatives are free, and a modified version

* if end derivatives are fixed.

* CA array containing the x-y data of the NURBS curve

* corresponding to a given parameter array

* D0,DM Vectors representing endpoint derivatives if prescribed

* rms the root mean square distance between the curve and the

* set of data points. Again a nominal value.

* success A logical variable indicating that a newly created knot

* vector has an element of ukb within each span, or not.

*

**

*

* OUTPUT FILE DESCRIPTIONS

*

* clean.dat The clean airfoil data, if given upon input

* cukb??.dat Data file containing x-y data of NURBS curve

* corresponding to paramter array ukb

* ice.dat The ice data

* icecv??.dat The NURBS curve x-y data

* log.txt A log file for the last execution of glapp

* nurbs??.dat A file containing NURBS data, such as the knot vector

* sum??.txt A file that summarizes a run

*

* In the above, ?? denotes the run number given upon input.

*

* Compile Command for g77 compiler

*g77 -fsource-case-preserve -Wunused -Wall -Wsurprising glapp.f -llapack -
lblas -o glapp

* Use xmgrace or other plotting program to examine output *dat files

 implicit none

 integer mdata,mdatamax,m2datamax,nmax, pmax,mcleandatamax

NASA/CR—2004-213071 25

 integer ndatasets,nredist,nredistmax,mcleandata,nmaxm

 parameter (mdatamax=600,nmax=600,pmax=5,m2datamax=8192)

 parameter (mcleandatamax=250,nredistmax=5)

 integer i,j,mknot,offset,p,n,spanA(0:m2datamax)

 integer nonspan(nmax-1),inonspan

 integer nvalues(nredistmax),nfirst,nlast

 integer INFO

 double precision U(0:nmax+pmax+1),du,u(0:m2datamax)

 double precision Q(2,0:mdatamax),Qclean(2,0:mcleandatamax)

 double precision ukb(0:mdatamax),P(2,0:nmax),Unew(0:nmax+pmax+1)

 double precision NA(0:pmax,0:mdatamax)

 double precision CA(2,0:m2datamax)

 double precision Rk(2,0:mdatamax),R(nmax-1,2)

 double precision NTNB(pmax+1,nmax-1),ep,eprms,eptemp,alpha

 double precision D0(2),Dm(2),sD0L,sDmL

 double precision phi0, phim,D0L,DmL,pi,epmax, rms

 character*12 infilename

 character*1 ans,ansD,ansDC,ansDr,ansphi,ansdeg,ansn,ansrms

 character*2 run

 logical success

* Open all output files and write a blank to clear data from

* any previous run of same number. Open and close later as needed.

 write(*,*)'Please enter a 2-digit run number.'

 read(*,*)run

 open(7,file='icecv'//run//'.dat')

 open(8,file='log.txt')

 open(9,file='clean.dat')

 open(11,file='ice.dat')

 open(12,file='nurbs'//run//'.dat')

 open(13,file='sum'//run//'.txt')

 open(14,file='cukb'//run//'.dat')

 write(7,*)'';write(8,*)'';write(9,*)''

 write(11,*)'';write(12,*)'';write(13,*)''

 write(14,*)''

 close(7);close(8);close(9)

 close(11);close(12);close(13);close(14)

NASA/CR—2004-213071 26

* Read in airfoil data. First line of data file contains number of

* datasets (1 = only ice data; 2 = both clean and ice data).

* Second line contains number of data points of first data set. Ask

* user for name of input file then read first two lines.

 write(*,*)'Enter name of data file as string.'

 read(*,*)infilename

 open(10,file=infilename)

 read(10,*)ndatasets

 read(10,*)mdata

 mdata = mdata -1 ! Adjust maximum because indices begin at 0

 if (ndatasets .eq. 1) then

 if (mdata .gt. mdatamax) then

 write(*,*)'Number of data points ',mdata,' exceeds maximum '

 1 ,'expected ',mdatamax,'. Aborting . . .'

 open(13,file='sum'//run//'.txt')

 write(13,*)'Number of data points ',mdata,' exceeds maximum'

 1 ,'expected ',mdatamax,'. Aborting . . .'

 close(13)

 stop

 end if

 do i=0,mdata

 read(10,*)Q(1,i),Q(2,i)

 end do

 close(10)

* Write ice data to file

 open(11,file='ice.dat')

 do i=0,mdata

 write(11,10)Q(1,i),Q(2,i)

 end do

 close(11)

 else if(ndatasets .eq. 2) then

 mcleandata = mdata

 if (mcleandata .gt. mcleandatamax -1) then

 write(*,*)'Number of clean airfoil data points ',mcleandata

 1 ,' exceeds maximim expected ',mcleandatamax,'.',

 2 ' Aborting. . .'

 open(13,file='sum'//run//'.txt')

 write(13,*)'Number of clean airfoil data points ',mcleandata

 1 ,' exceeds maximim expected ',mcleandatamax,'.',

 2 ' Aborting. . .'

NASA/CR—2004-213071 27

 close(13)

 stop

 end if

 do i=0,mcleandata

 read(10,*)Qclean(1,i),Qclean(2,i)

 end do

 open(9,file='clean.dat')

 do i=0,mcleandata

 write(9,10)Qclean(1,i),Qclean(2,i)

 end do

 close(9)

 read(10,*)mdata

 if (mdata .gt. mdatamax-1) then

 write(*,*)'Number of data points ',mdata,' exceeds maximum '

 1 ,'Increase mdatamax. Aborting . . .'

 open(13,file='sum'//run//'.txt')

 write(13,*)'Number of data points ',mdata,' exceeds maximum'

 1 ,' Increase mdatamax. Aborting . . .'

 close(13)

 stop

 end if

 mdata = mdata - 1

 do i=0,mdata

 read(10,*)Q(1,i),Q(2,i)

 end do

 close(10)

* Check that the length of the ice data exceeds the length

* of the clean airfoil data by a sufficient amount. The 20

* is not a rigid requirement. This is only to separate ice and

* clean airfoil data

 if(mdata .lt. mcleandata+20)then

 write(*,*)'Ice data length too short to proceed.'

 write(*,*)'Aborting'

 stop

 end if

* Determine where ice begins in ice/airfoil data

 i=0

 do while((abs(Qclean(1,i)-Q(1,i)) .lt. 1. e-6) .and.

 1 (abs(Qclean(2,i)-Q(2,i)) .lt. 1. e-6))

 i=i+1

 end do

NASA/CR—2004-213071 28

 nfirst=i

* Determine where ice ends in ice/airfoil data

 i=0

 do while((abs(Qclean(1,mcleandata-i)-Q(1,mdata-i)).lt.1.e-6)

 1 .and.(abs(Qclean(2,mcleandata-i)-Q(2,mdata-i)).lt.1.e-6))

 i=i+1

 end do

 nlast=i

 mdata = mdata - nfirst - nlast

* Transfer ice data to beginning of arrays

 do i = 0,mdata

 Q(1,i)=Q(1,nfirst+i)

 Q(2,i)=Q(2,nfirst+i)

 end do

* Write ice data to file

 open(11,file='ice.dat')

 do i=0,mdata

 write(11,10)Q(1,i),Q(2,i)

 end do

 close(11)

 end if

* Begin summary and log files. Get input file name and run number.

 open(13,file='sum'//run//'.txt')

 write(13,*)'Input data filename = ',infilename

 write(13,*)'Run number = ',run

 open(8,file='log.txt')

* Parameterize data

 call Cparam (mdata, Q, ukb)

* Inquire about endpoint derivatives

 pi=4.0*atan(1.0)

 ans = '0'

 do while (ans .ne. '1')

 write(*,*)'Do you want endpoint derivatives specified (y/n)?'

 read(*,*)ansD

 if (ansD .eq. 'Y' .or. ansD .eq. 'y')then

 D0(1)=(Q(1,1)-Q(1,0))/ukb(1) ! Calculate default values

 D0(2)=(Q(2,1)-Q(2,0))/ukb(1)

 Dm(1)=(Q(1,mdata)-Q(1,mdata-1))/(1-ukb(mdata-1))

NASA/CR—2004-213071 29

 Dm(2)=(Q(2,mdata)-Q(2,mdata-1))/(1-ukb(mdata-1))

 D0L = sqrt(D0(1)*D0(1)+D0(2)*D0(2))

 DmL = sqrt(Dm(1)*Dm(1)+Dm(2)*Dm(2))

 phi0=atan2(D0(2),D0(1))*180./pi

 phim=atan2(Dm(2),Dm(1))*180./pi

 write(13,*)

 write(13,*)'Endpoint derivatives specified.'

 write(*,*)'Do you want endpoint derivatives calculated '

 write(*,*)'by first-order differencing of first and last '

 write(*,*)'endpoint data pairs (y/n)?'

 read(*,*)ansDC

 if (ansDC .eq. 'Y' .or. ansDC .eq. 'y')then

 write(13,*)'Derivatives calculated by differencing'

 write(13,*)'of endpoint data pairs'

 ans = '1'

 offset=2

 else if (ansDC .eq. 'N' .or. ansDC .eq. 'n') then

 write(*,*)

 write(*,*)'Both direction and magnitudes of endpoint'

 write(*,*)'derivative vectors must be specified. Do'

 write(*,*)'you want the default directions determined'

 write(*,*)'from finite differencing of the first and'

 write(*,*)'last pairs of prescibed data? (y/n)'

 read(*,*)ansphi

 if (ansphi .eq. 'N' .or. ansphi .eq. 'n') then

 write(*,*)'Default values for upper and lower'

 write(*,*)'angles in degrees:'

 write(*,50)phi0,phim

 write(*,*)

 write(*,*)'Enter upper and lower endpoint'

 write(*,*)'directions as polar angles in degrees:'

 read(*,*)phi0,phim

 end if

 write(*,*)

 write(*,*)'Do you want finite differences of endpoint'

 write(*,*)'pairs to determine the magnitudes of '

 write(*,*)'these derivatives (y/n)?'

 read(*,*)ansDr

 if (ansDr .eq. 'N' .or. ansDr .eq. 'n') then

 write(*,*)

 write(*,*)'Specify the upper and lower '

 write(*,*)'magnitudes of these vectors as'

 write(*,*)'scale factors of the default values:'

NASA/CR—2004-213071 30

 read(*,*)sD0L,sDmL

 D0L=sD0L*D0L

 DmL=sDmL*DmL

 end if

 D0(1)=D0L*cos(phi0*pi/180.)

 D0(2)=D0L*sin(phi0*pi/180.)

 Dm(1)=DmL*cos(phim*pi/180.)

 Dm(2)=DmL*sin(phim*pi/180.)

 write(13,*)'Derivatives specified by user: '

 ans = '1'

 offset=2

 end if

 write(13,*)'Polar angle (degrees):'

 write(13,*)' upper: ',phi0

 write(13,*)' lower: ',phim

 write(13,*)'Lengths: '

 write(13,*)' upper: ',D0L

 write(13,*)' lower: ',DmL

 write(13,*)

 else if (ansD .eq. 'N' .or. ansD .eq. 'n') then

 write(13,*)

 write(13,*)'Endpoint derivatives not specified by user.'

 write(13,*)

 ans = '1'

 offset = 1

 end if

 end do

* Set degree p and initial number of terms via n

 p=3

 write(*,*)'The default degree of the NURBS curve is 3.'

 write(*,*)'Do you want the default degree (y/n)'

 read(*,*)ansdeg

 if (ansdeg .eq. 'N' .or. ansdeg .eq. 'n') then

 write(*,*)'Degree must satisfy 3 <= p <= pmax = ',pmax

 write(*,*)'Enter degree:'

 read(*,*)p

 if(p .gt. pmax .or. p .lt. 3)then

 write(*,*)'NURBS degree p = ',p,' not in range'

 write(*,*)' Aborting run...'

 write(13,*)'NURBS degree p = ',p,' not in range'

 write(13,*)' Aborting run...'

 close(13)

NASA/CR—2004-213071 31

 stop

 end if

 end if

 nmaxm = min(nmax,mdata - p - 2)

 if ((offset .eq. 1 .and. nmaxm .lt. p) .or.

 1 (offset .eq. 2 .and. nmaxm .lt. p+1))then

 write(*,*)'Your dataset is too small to proceed. Aborting..'

 write(8,*)'Your dataset is too small to proceed. Aborting..'

 write(13,*)'Your dataset is too small to proceed. Aborting..'

 stop

 end if

 write(*,*)

 write(*,*)'For the number of terms in the initial NURBS'

 write(*,*)'curve, do you want the minimum acceptable value (y/n)?'

 read(*,*)ansn

 if (ansn .eq. 'Y' .or. ansn .eq. 'y')then

 if (offset .eq. 1)n=p

 if (offset .eq. 2)n=p+1

 else

 write(*,*)'Enter n to specify number of terms in '

 1 ,'initial NURBS curve' ! n actually specifies number

 if (offset .eq.1) then ! terms less one

 write(*,*)'Initial n must satisfy ',p,' < = n < ',nmaxm

 else

 write(*,*)'Initial n must satisfy ',p+1,' < = n < ',nmaxm

 end if

 write(*,*)

 write(*,*)'(This maximum is an upper limit. Typically want'

 write(*,*)' to set n near lower limit and n << ',nmaxm,'.'

 write(*,*)'Matrix may be singular for n < ',nmaxm,' depending '

 1 ,'upon data set.)'

 write(*,*)

 write(*,*)'What value of n do you want?'

 read(*,*)n

 if((offset .eq. 1 .and. n .lt. p) .or.

 1 (offset .eq. 2 .and. n .lt. p+1) .or.

 2 n .gt. nmaxm)then

 write(*,*)'n is outside specified range.'

 write(*,*)'Aborting run...'

 write(13,*)'Specified n = ',n,' is outside range.'

 write(13,*)'Aborting run...'

 close(13)

NASA/CR—2004-213071 32

 stop

 end if

 end if

 write(13,*)'Initial n: ',n

* Inquire about desired maximum tolerance

 ans = '0'

 do while (ans .ne. '1')

 write(*,*)'Do you want the default maximum tolerance ',

 1 '(ep = 0.001)(y/n)?'

 read(*,*)ans

 if (ans .eq. 'Y' .or. ans .eq. 'y')then

 ep= 1.0d-3

 ans = '1'

 else if (ans .eq. 'N' .or. ans .eq. 'n') then

 write(*,*)'Enter maximum tolerance (0 < ep <= 0.1)'

 read(*,*)ep

 ans = '1'

 end if

 end do

 write(*,*)

 if ((ep .gt. 0.1) .or. (ep .le. 0.)) then

 write(*,*)'Distance criterion ep = ',ep,' should be '

 1 ,'in range 0 < ep <= 0.1. Aborting ...'

 write(13,*)'Distance criterion ep = ',ep,' should be '

 1 ,'in range 0 < ep <= 0.1. Aborting ...'

 close(13)

 stop

 end if

* Set eptemp equal to ep. eptemp will only differ from ep

* if root-mean square tolerance is set.

 eptemp = ep

* Inquire about root-mean square tolerance

 ans = '0'

 do while (ans .ne. '1')

 write(*,*)'Do you want to specify a root mean square tolerance ',

 1 '(y/n)?'

 read(*,*)ansrms

 if (ansrms .eq. 'Y' .or. ansrms .eq. 'y')then

 write(*,*)'Enter the root mean square tolerance. Your value ',

 1 'should lie between 0 and ',ep

 read(*,*)eprms

 if (eprms .gt. 0. .and. eprms .lt. ep)then

NASA/CR—2004-213071 33

 alpha = 0.9

 write(*,*)'The default factor by which to reduce the'

 write(*,*)'maximum deviation when attempting to satisfy'

 write(*,*)'your root mean square tolerance is 0.9.'

 write(*,*)'Do you accept the default factor?',

 1 ' (y/n)?'

 read(*,*)ans

 if (ans .eq. 'N' .or. ans .eq. 'n')then

 write(*,*)'Enter the desired factor.'

 read(*,*)alpha

 if (alpha .gt. 0. .and. alpha .lt. 1)then

 ans = '1'

 end if

 else

 ans = '1'

 end if

 end if

 write(8,*)'Reduction factor to achieve eprms:',alpha

 else

 ansrms = 'n'

 ans = '1'

 end if

 end do

 write(8,*)'p , n, ep = ',p,' ',n,' ',ep

 if (ansrms .eq. 'Y' .or. ansrms .eq. 'y')then

 write(8,*)'eprms = ',eprms

 end if

 write(8,*)'x,y, ukb data'

 do i = 0,mdata

 write(8,10)Q(1,i),Q(2,i),ukb(i)

 end do

 write(13,*)'Specified NURBS degree: ', p

 write(13,*)'Specified nominal maximum tolerance: ',ep

 if (ansrms .eq. 'Y' .or. ansrms .eq. 'y')then

 write(13,*)'Specified rms tolerance: ',eprms

 end if

* Create knotvector based upon Piegl & Tiller, p. 412, eqn. (9.69)

* and calculate mknot (number of knots less one). Keep track of

* value of n when Knotvec is called via vector nvalues.

 nredist=1

 nvalues(1)=n

NASA/CR—2004-213071 34

 call Knotvec (mdata,n, p, ukb, U)

 mknot = n + p + 1

 write(8,*)

 write(8,*)'Knot Vector U(i)'

 write(8,20)(i,U(i),i=0,mknot)

 write(8,*)

* Verify each knot span contains at least one value of ukb. Output

* argument success returns .true. if all is OK. If unsuccessful,

* execution is stopped.

 call Verify(mdata,n,p,ukb,U,success)

 if (success .eqv. .false.) then

 write(8,*)'Before entering main loop, not all knot spans',

 1 'contain at least one value of ukb. Aborting ...'

 write(*,*)'Before entering main loop, not all knot spans',

 1 'contain at least one value of ukb. Need to reduce',

 2 'initial value of n. Aborting ...'

 write(13,*)'Before entering main loop, not all knot spans',

 1 'contain at least one value of ukb. Need to reduce',

 2 'initial value of n. Aborting ...'

 close(13)

 stop

 end if

**

* Enter iteration loop to calculate global approximating NURBS

* curve. Require at least one iteration by setting number of non-

* converging spans greater than zero, e.g., inonspan = 1. Loop

* repeats until the number of non-converging spans drops to zero

* (inonspan = 0), at least one knot span in new knot vector does not

* contain a parameter value, or the number of terms in the next

* NURBS representation exceeds nmax + 1 (i.e., n > nmax).

 inonspan = 1

 write(8,*)'Entering do while' ! Main iteration loop.

 do while (inonspan .gt. 0 .and. success .and. n .le. nmax)

 write(8,*)

 write(8,*)'Top of do while '

 write(8,*)'n = ',n,' mknot = ',mknot

NASA/CR—2004-213071 35

* First, find span indices of all elements of ukb vector.

* Next, calculate all non-zero basis functions associated with

* elements of ukb.

 call FindSpanA(mdata, n, p,ukb,U,spanA)

 call NBasisA(mdata,mknot,p,pmax,spanA,ukb,U,NA)

* The first and last control points are simply the specified

* endpoint data. If end derivatives are specified, the second

* and next to last control points are determined by the

* derivative information.

 P(1,0)=Q(1,0)

 P(2,0)=Q(2,0)

 if (offset .eq. 2) then

 P(1,1)=Q(1,0)+ U(p+1)/p * D0(1)

 P(2,1)=Q(2,0)+ U(p+1)/p * D0(2)

 P(1,n-1)=Q(1,mdata)- (1.0 - U(n))/p * Dm(1)

 P(2,n-1)=Q(2,mdata)- (1.0 - U(n))/p * Dm(2)

 end if

 P(1,n)=Q(1,mdata)

 P(2,n)=Q(2,mdata)

* Next, calculate the set of Rk arrays, Piegl & Tiller, eqn.

* (9.63) on page 411, and then the right-hand side of (9.65):

 call Rkarray(mdata,n,offset,p,pmax,spanA,Q,ukb,P,U,NA,Rk)

 call RightHandSide(mdata,n,nmax,offset,p,pmax,spanA,NA,Rk,R)

* Calculate the NTNB matrix of eqn. (9.65) in banded form.

 call ABMatrix(mdata,n,offset,p,pmax,spanA,NA,NTNB)

* Call the LAPACK banded matrix solver dpbsv to find the

* locations of the internal control points. (The first and last

* control points are simply the first and last data points.

* If endpoint derivatives are specified, the next inner control

* points are determined from derivative information.). If

* the solver fails (INFO .ne. 0), an error message is generated.

 call dpbsv('u',n-2*offset+1,p,2,NTNB,pmax+1,R,nmax-1,INFO)

 if (INFO .eq. 0)then

NASA/CR—2004-213071 36

 do j=offset,n-offset

 P(1,j)=R(j+1-offset,1)

 P(2,j)=R(j+1-offset,2)

 end do

 else if (INFO .lt. 0)then

 write(8,*)'The ',-INFO,' argument had an illegal value',

 1 ' in dpvsv. Aborting ...'

 write(*,*)'The ',-INFO,' argument had an illegal value',

 1 ' in dpvsv. Aborting ...'

 write(13,*)'The ',-INFO,' argument had an illegal value',

 1 ' in dpvsv. Aborting ...'

 close(13)

 stop

 else

 write(8,*)'Matrix in dpbsv is singular (U(',INFO,INFO,

 1 ') = 0. Aborting ...'

 write(*,*)'Matrix in dpbsv is singular (U(',INFO,INFO,

 1 ') = 0.'

 write(*,*)'May need to increase tolerance ep or '

 write(*,*)'decrease initial n. Aborting ...'

 write(13,*)'Matrix in dpbsv is singular (U(',INFO,INFO,

 1 ') = 0.'

 write(13,*)'May need to increase tolerance ep or '

 write(13,*)'decrease initial n. Aborting ...'

 close(13)

 stop

 end if

 write(8,*)

 write(8,*)'Control points P(1,j) & P(2,j) for n = ',n

 write(8,30)(j,P(1,j),P(2,j),j=0,n)

* The distance |C(ukb(k)) - Q(k) | for each k = 1, mdata -1 is

* compared with distance specification ep (or eptemp if attempting

* to satisfy rms requirement). Here, Q(k) represents

* the kth data point of the airfoil. If this distance exceeds the

* specification for any data point within a given span, the entire

* span is declared to be non-converging and is tagged for

* subdivision for the next iteration.

 call SpanTest(eptemp,mdata,n,p,Q,ukb,P,U,nonspan,

NASA/CR—2004-213071 37

 1 inonspan)

* If all spans have converged (inonspan = 0), we calculate maximum

* (epmax) and root mean square (rms) deviations between curve and

* data. If eprms tolerance is not specified, the do while loop is

* exited. Otherwise, calculated and specified values for the

* root mean square error is compared. If rms > eprms, eptemp

* is set equal to alpha * epmax and SpanTest is called again.

* Here, alpha is a give parameter that lies between 0 and 1. Thus,

* we are guaranteed that at least one span will be non-compliant;

* i.e., inonspan will be greater than 0 as determined by SpanTest.

*

* Note: If alpha is set too low, the tolerance eptemp may become

* unnecessarily small, and the program could fail. On the other

* hand, if alpha is too close to unity, eptemp will be reduced by

* only a small amount, and most likely only one span will be

* non-compliant. Hence, lots of iterations of the do while

* loop might be necessary for convergence to eprms. The default

* value of alpha = 0.9 should insure rapid convergence and in

* most cases eptemp should not become so small as to cause a

* singular matrix. If the procedure does bomb out, either eprms

* or alpha needs to be increased appropriately.

*

* If inonspan > 0, we determine whether n will exceed nmax if

* another iteration is performed. If it will, execution is stopped.

* If the new n will be less than nmax, a new knot vector (Unew)

* is calculated. The new knot vector is formed by adding a new knot

* to the midpoint of each non-converging span. This new vector

* is tested to insure each span contains at least one value of

* ukb. If it does, the do while loop is executed again. Otherwise,

* a new knot vector is created for which all knots are

* redistributed. If this new knot vector contains any spans

* lacking a value of ukb, execution is stopped because the matrix

* NTNB is no longer guaranteed to be positive definite and well

* conditioned.

 if (inonspan .eq. 0) then

 if (eptemp .eq. ep)then

 write(8,*)

 write(8,*)'Maximum tolerance achieved.'

 write(13,*)

 write(13,*)'Maximum tolerance achieved.'

 end if

NASA/CR—2004-213071 38

 call Deviations(mdata,n,p,pmax,Q,ukb,P,U,epmax,rms,CA)

 if ((ansrms .eq. 'Y' .or. ansrms .eq. 'y') .and.

 1 rms .gt. eprms) then

 write(8,*)

 write(8,*)'epmax, rms = ',epmax,' ',rms

 eptemp = alpha * epmax

 write(8,*)'eptemp = ',eptemp

 call SpanTest(eptemp,mdata,n,p,Q,ukb,P,U,nonspan,

 1 inonspan)

 else if ((ansrms .eq. 'Y' .or. ansrms .eq. 'y') .and.

 1 rms .le. eprms) then

 write(8,*)'rms tolerance achieved'

 write(8,*)'epmax, rms = ',epmax,' ',rms

 end if

 end if

* if there are non-converging spans, and new n > nmax:

 if (inonspan .gt. 0 .and. n + inonspan .gt. nmax) then

 write(8,*)'Global approximation not converged, and next '

 1 ,'iteration will exceed maximum n. Aborting...'

 write(13,*)'Global approximation not converged, and next '

 1 ,'iteration will exceed maximum n. Aborting...'

 close(13);close(8)

 stop

* if there are non-converging spans, and new n <= nmax:

 elseif (inonspan .gt. 0 .and. n + inonspan .le. nmax)then

 call NewU(mdata,n,nonspan,inonspan,p,ukb,U,Unew)

 mknot = n+p+1

 write(8,*)

 write(8,*)'Potential new U for n = ',n

 write(8,*)'New mknot = ',mknot

 write(8,20)(i,Unew(i),i=0,mknot)

 write(8,*)

 call Verify(mdata,n,p,ukb,Unew,success)

 if (success) then ! The new knot vector created by inserting

 do i=0,mknot ! new knots at midpoints of non-converging

 U(i)=Unew(i) ! spans is OK. Save new knot vector

 end do ! to log file.

 write(8,*)

 write(8,*)'New Knot Vector OK for n = ',n

 else

 write(8,*)'Modified knot vector had span with no ',

 1 'parameter value. Redistributing knots to ',

NASA/CR—2004-213071 39

 2 'create all new knot vector.'

 nredist=nredist+1

 if (nredist .le. nredistmax) then

 nvalues(nredist) = n

 else

 do i = 1,nredistmax -1

 nvalues(i)=nvalues(i+1)

 end do

 nvalues(nredistmax) = n

 end if

 call Knotvec (mdata,n, p, ukb, Unew)

 write(8,*)

 write(8,*)'All new knot vector Unew(i) for n = ',n

 write(8,*)'Before Verify'

 write(8,20)(i,Unew(i),i=0,mknot)

 write(8,*)

 call Verify(mdata,n,p,ukb,Unew,success)

 if (success) then ! Redistributed knot vector is OK.

 do i=0,mknot

 U(i)=Unew(i)

 end do

 write(8,*)'New Knot Vector OK for n = ',n

* If endpoint derivatives are specified, define new control

* pts P(1) and P(n-1)

 if (offset .eq. 2) then

 P(1,1)=Q(1,0)+ U(p+1)/p * D0(1)

 P(2,1)=Q(2,0)+ U(p+1)/p * D0(2)

 P(1,n-1)=Q(1,mdata)- (1.0 - U(n))/p * Dm(1)

 P(2,n-1)=Q(2,mdata)- (1.0 - U(n))/p * Dm(2)

 end if

 else

 write(8,*)'Totally new knot vector still has',

 1 ' span with no ukb value.'

 write(*,*)'Totally new knot vector still has',

 1 ' span with no ukb value.'

 write(13,*)'Totally new knot vector still has',

 1 ' span with no ukb value.'

 if (eptemp .eq. ep) then

 write(8,*)'Maximum tolerance specification ',

 1 ep,' is too small'

 write(13,*)'Maximum tolerance specification ',

 1 ep,' is too small'

 else

NASA/CR—2004-213071 40

 write(8,*)'RMS error spec is too small. Actually',

 1 ' achieved rms of ',rms

 write(13,*)'RMS error spec is too small. Actually',

 1 ' achieved rms of ',rms

 end if

 close(13)

 stop

 end if

 end if

 end if

 end do

 write(8,*)'n, mknot ep = ',n,' ' ,mknot,' ',ep

 write(8,*)

 write(8,*)'Control points P(1,j) & P(2,j) for n = ',n

 write(8,30)(j,P(1,j),P(2,j),j=0,n)

 write(8,*)

 write(8,*)'Knot Vector U(i)'

 write(8,20)(i,U(i),i=0,mknot)

 close(8)

 open(12,file='nurbs'//run//'.dat')

 write(12,30)p

 write(12,30)n

 write(12,30)mknot

 do i = 0,mknot

 write(12,10)U(i)

 end do

 do i = 0, n

 write(12,10)P(1,i),P(2,i)

 end do

 close(12)

 if (ansrms .eq. 'Y' .or. ansrms .eq.'y') then

 write(13,*)'RMS tolerance spec achieved.'

 end if

 write(13,*)'Knot vector redistributed for '

 write(13,*)'following values of n. If redistribution'

 write(13,*)'occured more than ',nredistmax, ' times,'

 write(13,*)'only last ',nredistmax,' times are reported.'

 write(13,40)(nvalues(i),i=1,min(nredist,nredistmax))

 write(13,*)'Knot vector was redistributed a total of ',nredist,

 1 ' times.'

 write(13,*)

 write(13,*)'Final value of n: ',n

NASA/CR—2004-213071 41

 write(13,*)

 if (offset .eq. 1) then

 D0(1)=p*(P(1,1)-P(1,0))/U(p+1)

 D0(2)=p*(P(2,1)-P(2,0))/U(p+1)

 Dm(1)=p*(P(1,n)-P(1,n-1))/(1.0-U(n))

 Dm(2)=p*(P(2,n)-P(2,n-1))/(1.0-U(n))

 D0L = sqrt(D0(1)*D0(1)+D0(2)*D0(2))

 DmL = sqrt(Dm(1)*Dm(1)+Dm(2)*Dm(2))

 phi0=atan2(D0(2),D0(1))*180./pi

 phim=atan2(Dm(2),Dm(1))*180./pi

 write(13,*)'Endpoint Derivative Information:'

 write(13,*)'Polar angle (degrees):'

 write(13,*)' upper: ',phi0

 write(13,*)' lower: ',phim

 write(13,*)'Lengths: '

 write(13,*)' upper: ',D0L

 write(13,*)' lower: ',DmL

 end if

 write(13,*)'Maximum nominal deviation between NURBS curve'

 write(13,*)'and ice data: ',epmax

 write(13,*)'Nominal rms deviation between NURBS curve'

 write(13,*)'and ice data: ',rms

 close(13)

 open(14,file='cukb'//run//'.dat')

 write(14,60)(CA(1,i),CA(2,i),i=0,mdata)

 mdata=m2datamax

 du=1.0/dble(mdata)

 u(0)=0.0

 do i=1,mdata

 u(i)=u(i-1)+du

 end do

 call FindSpanA(mdata,n,p,u ,U,spanA)

 call NCurveA(mdata,n,p,pmax,spanA,u,

 1 P, U,CA)

 open(7,file='icecv'//run//'.dat')

 do i = 0,mdata

 write(7,10)CA(1,i),CA(2,i)

 end do

 close(7)

 stop

 10 format(1x,3(e22.16,2x))

 20 format(1x,i3,3x,f14.10)

NASA/CR—2004-213071 42

 30 format(1x,i3,3x,f14.10,3x,f14.10)

 40 format(1x,10i5)

 50 format(1x,f6.1,' and ',f6.1)

 60 format(1x,2(f14.10,2x))

 end

**

**

 integer function FindSpan(n,p,u,U)

**

**

* FindSpan calculates the span index of a curve parameter u via a

* bisection routine

**

* Record of Revisions:

*

* Date Programer Description of Change

* ==== ============ =======================

* 05/20/03 Loren H. Dill Original code

*

**

* Main Variables *

* n Largest index of control pnts vector *

* p Degree of basis functions *

* u curve parameter *

* U knot vector

*

**

* Reference: Piegl & Tiller, p.68

*

 implicit none

 integer n,p,low,high,mid

 double precision u, U(0:n+p+1)

 if(u .eq. U(n+1)) then

 FindSpan = n

 return

 end if

 low=p;high=n+1;mid=(low+high)/2

NASA/CR—2004-213071 43

 do while((u .lt.U(mid)) .or. (u .ge. U(mid+1)))

 if(u .lt. U(mid)) then

 high = mid

 else

 low = mid

 endif

 mid = (low+high)/2

 end do

 FindSpan = mid

 return

 end

**

 subroutine FindSpanA(mdata,n,p,ukb,U,spanA)

**

* FindSpanA calculates the span indices corresponding to an array

* of curve parameters ukb. Uses same algorithm as FindSpan, but

* modified for an array of curve parameter values.

**

* Record of Revisions:

*

* Date Programer Description of Change

* ==== ============ =======================

* 05/20/03 Loren H. Dill Original code

*

**

* Main Variables *

*

* INPUT

* mdata Largest index of data array ukb *

* n Largest index of control pnts vector *

* p Degree of basis functions *

* ukb 1-D array of curve parameter values *

* U knot vector *

*

* OUTPUT

* spanA 1-D array of indices for ukb data

* *

**

* Reference: Piegl & Tiller, p.68

NASA/CR—2004-213071 44

*

 implicit none

 integer i,mdata,n,p,low,high,mid

 integer spanA(0:mdata)

 double precision ukb(0:mdata), U(0:n+p+1)

 do i=0,mdata

 if(ukb(i) .eq. U(n+1)) then

 spanA(i) = n

 else

 low=p;high=n+1;mid=(low+high)/2

 do while((ukb(i) .lt.U(mid)) .or. (ukb(i) .ge. U(mid+1)))

 if(ukb(i) .lt. U(mid)) then

 high = mid

 else

 low = mid

 end if

 mid = (low+high)/2

 end do

 spanA(i) = mid

 end if

 end do

 return

 end

**

* *

 subroutine NBasis(i,mknot,p,u,U,N)

* *

**

* NBasis calculates the p+1 non-zero basis functions within knot *

* span index i *

* *

**

* Record of Revisions:

*

* Date Programer Description of Change

* ==== ============ =======================

* 05/20/03 Loren H. Dill Original code

*

**

NASA/CR—2004-213071 45

*

* INPUT Variables *

* i knot span index of u

* mknot largest index of U *

* p degree of NURBS curve *

* u value of curve parameter

* U knot vector of length m+1 *

* *

* OUTPUT Variable *

* N Basis function array: (N(i-p,p), ..., N(i,p)) *

* *

**

* Reference: Piegl & Tiller, p.70

*

 implicit none

 integer i,j,mknot,p,r

 double precision u,U(0:mknot),N(0:p),left(p),right(p),saved,temp

 N(0)=1.0

 do j=1,p

 left(j) = u-U(i+1-j)

 right(j) = U(i+j)-u

 saved = 0.0

 do r=0,j-1

 temp = N(r)/(right(r+1)+left(j-r))

 N(r) = saved + right(r+1) * temp

 saved = left(j-r) * temp

 end do

 N(j) = saved

 end do

 return

 end

**

* *

 subroutine NBasisA(mdata,mknot, p,pmax,spanA,ukb,U,NA)

* *

**

* NBasisA calculates the p+1 non-zero basis functions corresponding*

* to each element in the 1-D array of parameter values ukb *

* *

**

* Record of Revisions:

NASA/CR—2004-213071 46

*

* Date Programer Description of Change

* ==== ============ =======================

* 05/2003 Loren H. Dill Original code

*

**

*

* INPUT Variables *

* mdata largest index of parameter array ukb *

* mknot largest index of U *

* p degree of NURBS curve *

* pmax highest possible degree of NURBS curve *

* spanA 1-D array of span indices corresponding to ukb *

* ukb 1-D array of curve parameter values *

* U knot vector of length mknot+1 *

* *

* OUTPUT Variable *

* NA Basis function 2-D array. Column i contains to the *

* p+1 non-zero basis functions for given ukb(i) *

* *

**

* Reference: Piegl & Tiller, p.70

*

 implicit none

 integer i,j,mdata,mknot !,offset

 integer p,pmax,r, spanA(0:mdata)

 double precision ukb(0:mdata),U(0:mknot),NA(0:pmax,0:mdata)

 double precision left(p),right(p),saved,temp

 do i=0, mdata

 NA(0,i)=1.0

 do j=1,p

 left(j) = ukb(i)-U(spanA(i)+1-j)

 right(j) = U(spanA(i)+j)-ukb(i)

 saved = 0.0

 do r=0,j-1

 temp = NA(r,i)/(right(r+1)+left(j-r))

 NA(r,i) = saved + right(r+1) * temp

 saved = left(j-r) * temp

 end do

 NA(j,i) = saved

 end do

NASA/CR—2004-213071 47

 end do

 return

 end

**

 subroutine Cparam (mdata,Q, ukb)

**

* *

* Computes a normalized parametric variable based upon arc length *

* for a 2D Cartesian curve. *

* *

**

* Record of Revisions:

*

* Date Programer Description of Change

* ==== ============ =======================

* 4/14/03 Loren H. Dill Original code

*

**

* INPUT VARIABLES

* mdata mdata + 1 = Number of points defining curve

* Q (x,y) Cartesian coordinates for curve (2-D array)

*

* OUTPUT VARIABLE

* ukb Parametric variable for curve (1-D array)

*

**

 implicit none

 integer mdata, k

 double precision ukb(0:mdata),Q(2,0:mdata)

* Compute the parametric variable ukb based on arc length and

* normalize to unity

 ukb(0) = 0.0

 do k = 1, mdata

 ukb(k) = ukb(k-1) +

 1 sqrt((Q(1,k) - Q(1,k-1))*(Q(1,k) - Q(1,k-1))

 2 + (Q(2,k) - Q(2,k-1))*(Q(2,k) - Q(2,k-1)))

 end do

NASA/CR—2004-213071 48

 do k = 1, mdata - 1

 ukb(k) = ukb(k)/ukb(mdata)

 end do

 ukb(mdata) = 1.0

 return

 end

**

 subroutine Knotvec(mdata, n, p, ukb, U)

**

* Knotvec calculates a knot vector for global approximation based *

* upon equations (9.68) and (9.69) of Piegl and Tiller (1997). *

* The routine is said to guarantee that every knot span contains *

* at least one ukb point, resulting in a matrix NTNB that is

* positive definite and well-conditioned. *

**

* Record of Revisions:

*

* Date Programer Description of Change

* ==== ============ =======================

* 05/20/03 Loren H. Dill Original code

*

**

*

* Main variables *

* *

* INPUT *

* mdata m+1 is number of data points *

* n n+1 is number of control points in approximation *

* p degree of nurbs curve approximation *

* ukb array of parameter values corresponding to data points *

* *

* OUTPUT *

* U knot vector of length n + p + 2 *

**

 implicit none

 integer i,j,mdata,n,p

 double precision d, alpha, ukb(0:mdata),U(0:n+p+1)

NASA/CR—2004-213071 49

 do i = 0,p

 U(i)= 0.0

 U(n+p+1-i)= 1.0

 end do

 d = dble(mdata+1)/dble(n-p+1)

 do j = 1, n-p

 i = int(j * d)

 alpha = dble(j)* d -dble(i)

 U(p + j) = (1.0 - alpha)* ukb(i - 1) +

 1 alpha * ukb(i)

 end do

 return

 end

**

 subroutine NCurve(n,p,u, P, U,C)

**

* *

* Subroutine NCurve calculates the (x,y) point corresponding to *

* scalar parameter u of a nonrational NURBS 2-D curve. *

* *

**

* Record of Revisions:

*

* Date Programer Description of Change

* ==== ============ =======================

* 05/20/03 Loren H. Dill Original code

*

**

* *

* INPUT VARIABLES *

* *

* n n+1 is number of control points *

* p degree of B-spline *

* u curve parameter *

* P control points, 2-D array in column format *

* U knot vector *

* *

**

* *

* OUTPUT *

* *

NASA/CR—2004-213071 50

* C calculated (x,y) point on NURBS curve, 1-D array *

* *

**

 implicit none

 integer i,j,k, mknot, n, p

 integer FindSpan

 double precision u, P(2,0:n), U(0:n+p+1)

 double precision N(0:p)

 double precision C(2)

 mknot=n+p+1

 i = FindSpan(n,p, u, U)

 call NBasis(i, mknot, p, u, U, N)

 C(1) = 0.0

 C(2) = 0.0

 j = i - p

* Sum the nonzero terms only

 do k = 0, p

 C(1) = C(1) + N(k) * P(1, j + k)

 C(2) = C(2) + N(k) * P(2, j + k)

 end do

 return

 end

**

*

 subroutine NCurveA(mdata,n,p,pmax,spanA,u, P, U,CA)

*

**

* *

* Subroutine NCurveA calculates all (x,y) points corresponding to *

* the 1D array u for a nonrational NURBS 2-D curve.

* *

**

* Record of Revisions:

*

* Date Programer Description of Change

NASA/CR—2004-213071 51

* ==== ============ =======================

* 05/20/03 Loren H. Dill Original code

*

**

* *

* INPUT VARIABLES *

* *

* mdata largest index of parameter vector u

* n largest index of control points *

* p degree of NURBS curve *

* pmax maximum degree of NURBS curve

* spanA 1-D array of span indices corresponding to ukb *

* u curve parameter, 1-D array *

* P control points, 2-D array in column format *

* U knot vector *

* *

**

* *

* OUTPUT *

* *

* CA calculated array of (x,y) points on NURBS curve, *

* 2-D array *

* *

**

 implicit none

 integer i,j,k, mdata, mknot, n, p, pmax

 integer spanA(0:mdata)

 double precision u(0:mdata), P(2,0:n), U(0:n+p+1)

 double precision NA(0:pmax,0:mdata)

 double precision CA(2,0:mdata)

 call NBasisA(mdata, mknot,p, pmax, spanA, u, U, NA)

 do i=0,mdata

 CA(1,i) = 0.0

 CA(2,i) = 0.0

 j = spanA(i) - p

 do k = 0, p

 CA(1,i) = CA(1,i) + NA(k, i) * P(1, j + k)

 CA(2,i) = CA(2,i) + NA(k, i) * P(2, j + k)

 end do

NASA/CR—2004-213071 52

 end do

 return

 end

**

*

 subroutine Rkarray(mdata,n,offset,p,pmax,spanA,Q,ukb,P,U,NA,Rk)

*

**

* *

* Rkarray calculates a 2-D array that contains the m-1 values for *

* the x- and y- components for eqn 9.63 in Piegl & Tiller if end *

* derivatives are free (offset = 1). If end derivatives are fixed *

* (offset = 2), the algorithm is appropriately modified. *

* *

**

* Record of Revisions:

*

* Date Programer Description of Change

* ==== ============ =======================

* 05/20/03 Loren H. Dill Original code

*

**

* *

* INPUT VARIABLES *

* *

* mdata largest index of parameter vector u

* n largest index of control points *

* offset indicates whether endpoint derivatives are free

* (1) or fixed (2)

* p degree of NURBS curve *

* pmax maximum degree of NURBS curve

* spanA 1-D array of span indices corresponding to ukb *

* Q (x,y) prescribed data, 2-D array

* ukb curve parameter, 1-D array *

* P control points, 2-D array in column format *

* U knot vector *

* NA array of nonzero basis functions corresponding to ukb

* *

**

* *

* OUTPUT *

NASA/CR—2004-213071 53

* *

* Rk 2-D array containing m-1 values. Required for calculation

* of right-hand side of matrix equation.

* *

**

 implicit none

 integer k,mdata, n, offset, p, pmax, spanA(0:mdata)

 double precision Q(2,0:mdata),ukb(0:mdata),U(0:n+p+1)

 double precision NA(0:pmax,0:mdata),Rk(2,0:mdata)

 double precision P(2,0:n)

* Calculate the Rk vectors.

 do k=1, mdata-1

 Rk(1,k)=Q(1,k)

 Rk(2,k)=Q(2,k)

 if (spanA(k) .eq. p) then

 Rk(1,k)= Rk(1,k) - NA(0,k) * P(1,0)

 Rk(2,k)= Rk(2,k) - NA(0,k) * P(2,0)

 if (offset .eq. 2) then

 Rk(1,k)=Rk(1,k)-NA(1,k)*P(1,1)

 Rk(2,k)=Rk(2,k)-NA(1,k)*P(2,1)

 end if

 end if

 if (offset .eq. 2 .and. spanA(k) .eq. p+1) then

 Rk(1,k)=Rk(1,k)-NA(0,k)*P(1,1)

 Rk(2,k)=Rk(2,k)-NA(0,k)*P(2,1)

 end if

 if(offset .eq. 2 .and. spanA(k) .eq. n-1) then

 Rk(1,k)=Rk(1,k)-NA(p,k)*P(1,n-1)

 Rk(2,k)=Rk(2,k)-NA(p,k)*P(2,n-1)

 end if

 if(spanA(k) .eq. n)then

 if (offset .eq. 2) then

 Rk(1,k)=Rk(1,k)-NA(p-1,k)*P(1,n-1)

 Rk(2,k)=Rk(2,k)-NA(p-1,k)*P(2,n-1)

 end if

 Rk(1,k)= Rk(1,k) - NA(p,k)*P(1,n)

 Rk(2,k)= Rk(2,k) - NA(p,k)*P(2,n)

 end if

 end do

NASA/CR—2004-213071 54

 return

 end

**

 subroutine RightHandSide(mdata,n,nmax,offset,p,pmax,spanA,NA,Rk,R)

**

* *

* RightHandSide calculates the R array, a n-1 X 2 array, which *

* corresponds to the right side of eqn. 9.65 of Piegl & Tiller if *

* end derivatives are free (offset = 1). If end derivatives are *

* fixed (offset = 2), the algorithm is appropriately modified. *

* *

**

* Record of Revisions:

*

* Date Programer Description of Change

* ==== ============ =======================

* 05/20/03 Loren H. Dill Original code

*

**

* *

* INPUT VARIABLES *

* *

* mdata largest index of parameter vector u

* n largest index of control points *

* nmax largest value of n permitted

* offset flag indicating whether endpoint derivatives are free

* (1) or fixed (2)

* p degree of NURBS curve *

* pmax maximum degree of NURBS curve

* spanA 1-D array of span indices corresponding to ukb *

* NA array of nonzero basis functions corresponding to ukb

* Rk array corresponding to eqn. 9.65 of Piegl & Tiller

* *

**

* *

* OUTPUT *

* *

* R Right-hand side of linear matrix equation

*

**

*

 implicit none

NASA/CR—2004-213071 55

 integer j,k,mdata, n,nmax,offset,p,pmax,row, spanA(0:mdata)

 double precision NA(0:pmax,0:mdata),Rk(2,0:mdata),R(nmax-1,2)

 do j=offset,n-offset

 R(j+1-offset,1)=0.0

 R(j+1-offset,2)=0.0

 do k=1,mdata-1

 row = j-(spanA(k)-p)

 if ((row .ge. 0) .and. (row .le. p)) then

 R(j+1-offset,1) = R(j+1-offset,1) +

 1 NA(row,k) * Rk (1, k)

 R(j+1-offset,2) = R(j+1-offset,2) +

 1 NA(row,k) * Rk (2, k)

 end if

 end do

 end do

 return

 end

**

 subroutine ABMatrix (mdata,n,offset,p,pmax,spanA,NA,NTNB)

**

* *

* AMatrix computes the NTN matrix of Piegl and Tiller, p. 411, and *

* stores the matrix in upper band form suitable for Lapack *

* subroutine dpbsv. Matrox NTN has p superdiagonals. *

* *

**

* Record of Revisions:

*

* Date Programer Description of Change

* ==== ============ =======================

* 05/20/03 Loren H. Dill Original code

*

**

* *

* INPUT VARIABLES *

* *

* mdata largest index of input data *

* n largest index of control vectors

* offset flag for derivatives specification: 1 if not, 2 if

* specified

* p current degree of NURBS curve *

* pmax parameter, max degree of NURBS curve *

NASA/CR—2004-213071 56

* spanA 1-array of span indices corresponding input data *

* NA a 2-D array containing the p+1 non-zero basis *

* functions corresponding to each data point. *

* *

**

* OUTPUT *

* *

* NTNB The NTN (Transpose(N) * N) array using band storage *

* *

**

 implicit none

 integer i,j,k,mdata,n,offset,p,pmax

 integer kd, row,rowi,rowj,spanA(0:mdata)

 double precision NA(0:pmax,0:mdata)

 double precision NTNB(pmax+1,n-1)

 kd=p

 do i=offset,n-offset

 do j=i,n-offset

 if(max(1,j+1-offset-kd) .le. i+1-offset)then

 row=kd+1+i-j

 NTNB(row,j+1-offset)=0.0

 do k=1,mdata-1

 rowi = i-(spanA(k)-p)

 rowj = j-(spanA(k)-p)

 if ((rowi .ge. 0) .and. (rowi .le. p)

 1 .and. (rowj .ge. 0) .and. (rowj .le. p)) then

 NTNB(row,j+1-offset) = NTNB(row,j+1-offset) +

 1 NA(rowj,k) * NA(rowi,k)

 end if

 end do

 end if

 end do

 end do

 return

 end

**

 subroutine SpanTest(ep,mdata,n,p,Q,ukb,P,U,nonspan,i)

**

NASA/CR—2004-213071 57

* *

* SpanTest returns in variable nonspan the indices of spans in U *

* that have not converged. In order for a span j to converge, the *

* distances |C(ukb(k))-Q(k)| must be less than or equal to ep, the

* distance criterion, for all ukb(k) located in span j. Variable i *

* gives the the number of non-converging spans in knot vector U. *

* Here, Q(k)= (x(k),y(k)) is one of the prescribed iced-airfoil *

* data points. *

* *

**

**

* Record of Revisions:

*

* Date Programer Description of Change

* ==== ============ =======================

* 05/20/03 Loren H. Dill Original code

*

**

* *

* INPUT VARIABLES *

* *

* ep nominal tolerance between NURBS curve and each data

* point

* mdata largest index of input data *

* n largest (current) index of control vectors *

* p current degree of NURBS curve *

* Q (x,y) the prescribed data, 2D array

* ukb parameter array corresponding to data

* P control points of NURBS curve

* U knot vector of NURBS curve

**

* OUTPUT *

* *

* nonspan 1-D array containing indices of non-converging spans

* i number of non-converging spans

* *

**

 implicit none

 integer p,n,mdata,mknot, nonspan(n+1-p)

 integer i,j,k,spanA(0:mdata),offset

 double precision P(2,0:n),U(0:n+p+1),ukb(0:mdata)

NASA/CR—2004-213071 58

 double precision Q(2,0:mdata)

 double precision ep, C(2), epsq,distancesq,diff(2)

 mknot = n+p+1

 offset = 1

 epsq=ep*ep ! Actually compare the squared distances

 call FindSpanA(mdata,n,p,ukb,U,spanA)

 write(8,*)

 k=1

 i=0

 do while (k .le.mdata-1)

 call NCurve(n,p,ukb(k), P, U,C)

 diff(1)= C(1)-Q(1,k)

 diff(2)= C(2)-Q(2,k)

 distancesq=diff(1)*diff(1)+diff(2)*diff(2)

 if (distancesq .gt. epsq) then

 write(8,*)'non-converging span, spanA(k) = ',spanA(k)

 i = i+1

 nonspan(i)= spanA(k)

 if(spanA(k) .eq. n) then

 k= mdata

 else

 j=k+1

 do while (spanA(k) .eq. spanA(j))

 j = j + 1

 end do

 k = j-1

 end if

 end if

 k=k+1

 end do

 return

 end

**

 subroutine Deviations(mdata,n,p,pmax,Q,ukb,P,U,epmax,rms,CA)

**

* *

* Deviations returns in variable epmax the maximum nominal distance

* between the nurbs curve and the discrete ice data by evaluating

* all distances |C(ukb(k))-Q(k)| Here, Q(k)= (x(k),y(k)) is one

* of the prescribed iced-airfoil data points. The routine also

NASA/CR—2004-213071 59

* returns curve values CA = C(ukb) for each parameter value ukb.

* Deviations also calculates and returns the root mean squared

* distance (rms) from the data to the curve. This is again a

* nominal value in the sense that the curve passes somewhat closer

* to the each data point than is represented by |C(ukb(k))-Q(k)|.

* *

**

* Record of Revisions:

*

* Date Programer Description of Change

* ==== ============ =======================

* 5/20/03 Loren H. Dill Original code

* 5/22/03 L.H. Dill Added rms capability

**

* INPUT VARIABLES *

* *

* mdata largest index of input data *

* n largest (current) index of control vectors *

* p current degree of NURBS curve *

* pmax parameter, max degree of NURBS curve *

* Q (x,y), the prescribed data, 2D array

* ukb parameter array corresponding to data

* P control points of NURBS curve

* U knot vector of NURBS curve

**

* OUTPUT *

* *

* epmax maximum nominal deviation between NURBS curve and

* prescribed data

* rms root mean square deviation between the curve and

* prescribed data

* CA array containing all the x-y values along the NURBS

* curve corresponding to curve parameter values ukb

* *

**

 implicit none

 integer p,n,mdata,mknot,pmax

 integer k,spanA(0:mdata)

 double precision P(2,0:n),U(0:n+p+1),ukb(0:mdata)

 double precision Q(2,0:mdata)

 double precision epmax, epmax2,rms,sum,CA(2,0:mdata)

NASA/CR—2004-213071 60

 double precision dist2,diff(2)

 mknot = n+p+1

 epmax2=0.0

 sum=0.0

 call FindSpanA(mdata,n,p,ukb,U,spanA)

 call NCurveA(mdata,n,p,pmax,spanA,ukb, P, U,CA)

 do k=1,mdata-1

 diff(1)= CA(1,k)-Q(1,k)

 diff(2)= CA(2,k)-Q(2,k)

 dist2=diff(1)*diff(1)+diff(2)*diff(2)

 sum=sum+dist2

 epmax2=dmax1(epmax2,dist2)

 end do

 epmax = sqrt(epmax2)

 rms = sqrt(sum/dble(mdata-1))

 return

 end

**

 subroutine NewU(mdata,n,nonspan,inonspan,p,ukb,U,Unew)

**

*

* NewU adds a knot at the midpoint of every span that contains

* data points that have not met the distance criterion.

*

**

* Record of Revisions:

*

* Date Programer Description of Change

* ==== ============ =======================

* 05/20/03 Loren H. Dill Original code

*

**

*

*

* INPUT VARIABLES

*

* mdata Largest index of ukb, the parameter array

* n On input, largest index of sum in current NURBS curve

* nonspan 1-D array containing the span indexes of current knot

* vector that have not converged.

NASA/CR—2004-213071 61

* inonspan number of elements in nonspan

* p degree of NURBS curve

* ukb the parameter array, of length mdata + 1

* U Original knot vector

**

* OUTPUT VARIABLE

*

* n Largest index of sum in new NURBS curve

* Unew New knot vector

*

**

 implicit none

 integer i,inonspan,j, mdata, mknot, n, nonspan(inonspan+1),p

 double precision ukb(0:mdata),U(0:n+p+1)

 double precision Unew(0:n+p+1+inonspan),unew(inonspan)

* Set nonspan(inonspan+1) to mknot for termination

* condition

 mknot=n+p+1

 nonspan(inonspan+1)=mknot

 do i=0,p

 Unew(i)=0.0

 Unew(mknot+inonspan-i)=1.0

 end do

 do i=1,inonspan

 unew(i) = 0.5*(U(nonspan(i))+U(nonspan(i) + 1))

 end do

 j = 1

 do i = p+1,mknot+inonspan-p-1

 if(i .le. nonspan(j)+ j -1) then

 Unew(i)= U(i -j + 1)

 else

 Unew(i)=unew(j)

 j=j+1

 end if

 end do

 n = n + inonspan

NASA/CR—2004-213071 62

 return

 end

**

 subroutine Verify(mdata,n,p,ukb,U,success)

**

*

* Verify checks knot vector U to insure at least one parameter

* value is located within each knot span. If it does, output

* variable success reports True. If not, success reports False

*

**

* Record of Revisions:

*

* Date Programer Description of Change

* ==== ============ =======================

* 05/20/03 Loren H. Dill Original code

*

**

* INPUT VARIABLES

* mdata Largest index of ukb, the parameter array

* n Largest index of control points

* p degree of NURBS curve

* ukb the parameter array, of length mdata + 1

* U Original knot vector

*

**

* OUTPUT VARIABLE

*

* success Logical variable indicating if .true. that a element of

* ukb is located within each span of new knot vector

**

 implicit none

 integer i,mdata, n, p ,spanA(0:mdata)

 double precision ukb(0:mdata),U(0:n+p+1)

 logical success

 success = .true.

 call FindSpanA(mdata,n,p,ukb,U,spanA)

 do i=1,mdata-1

NASA/CR—2004-213071 63

 if (spanA(i+1)-spanA(i) .gt. 1) then

 success = .false.

 write(8,*)'No ukb element in span ',spanA(i)+1

 return

 end if

 end do

 return

 end

This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Final Contractor Report

Unclassified

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546–0001

Available electronically at http://gltrs.grc.nasa.gov

April 2004

NASA CR—2004-213071

E–14547

WBS–22–728–41–10
NAG3–2848

69

Representation of Ice Geometry by Parametric Functions: Construction of
Approximating NURBS Curves and Quantification of Ice Roughness—
Year 1: Approximating NURBS Curves

Loren H. Dill

Aircraft icing; Computer software

Unclassified -Unlimited
Subject Categories: 02 and 61 Distribution: Nonstandard

University of Akron
302 Buchtel Mall
Akron, Ohio 44325

Project Manager, Yung K. Choo, Turbomachinery and Propulsion Systems Division, NASA Glenn Research Center,
organization code 5840, 216–433–5868.

Software was developed to construct approximating NURBS curves for iced airfoil geometries. Users specify a
tolerance that determines the extent to which the approximating curve follows the rough ice. The user can therefore
smooth the ice geometry in a controlled manner, thereby enabling the generation of grids suitable for numerical
aerodynamic simulations. Ultimately, this ability to smooth the ice geometry will permit studies of the effects of
smoothing upon the aerodynamics of iced airfoils. The software was applied to several different types of iced airfoil
data collected in the Icing Research Tunnel at NASA Glenn Research Center, and in all cases was found to efficiently
generate suitable approximating NURBS curves. This method is an improvement over the current "control point
formulation" of Smaggice (v.1.2). In this report, we present the relevant theory of approximating NURBS curves and
discuss typical results of the software.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /TimesNewRomanMT-ExtraBold
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

